/ /
. {

A/séets on Ca rdano

Indigo Laboratories, Inc.

/ info@indigo-labs.io

March 2024, v2.0.0 (Draft)

Table of Contents

1 Motivation
2 Introduction
2.1 Synthetic Assets e e
2.2 Indigo Protocol e
2.3 Benefits of iAssets
2.3.1 Obtaining iAssets L
2.4 Collateralized Debt Positions
2.4.1 CDP and iAsset Example
2.4.2 CDP Actions and States
2.4.3 CDP Liquid Staking L e
2.4.4 CDP Redemption
2.4.5 CDP Interest o o o e e
25 INDY e e e .. AR .
2.5.1 Fair Launch e e
2.5.2 Token Generation Event Lo
2.5.3 Imitial Liquidity Event L
2.5.4 Indigo Rewards L
2.6 Stability Poolso e
2.6.1 Stability Pool Staking Fees L
2.6.2 Stability Pool Withdraw Fee
2.6.3 Stability Pool Liquidation Rewards o
2.6.4 Liquidity State Transitions
27 OraclesSSESEEE F g S 0
2.8 iAsset Price Stability
2.8.1 Managing Liquidation Ratio for Peg Lo oL
2.8.2 Managing Maintenance Ratio for Peg o000
2.8.3 Managing Interest Rates for Peg oo
2.8.4 Managing Redemptions for Peg
2.9 GOVEINAICE v v v i e
291 Indigo DAO ECSSEEOE RS, .
2.9.2 Indigo Foundation
2.9.3 Governance Processo
294 Stakingo EENESEEE | | | SRR
2.9.5 Governance Rewards
2.9.6 Adaptive Quorum Biasing
2.9.7 Governance Sharding L
2.9.8 Governance Proposal Typeso
2.9.9 Protocol Parameters L e
2.9.10 Governance Proposal Process
2.9.11 Indigo DAO Treasury v i i i v vttt e e
2.9.12 Protocol Upgrade e e
2.10 Protocol Profit Sharing L
3 Smart Contract Design
31 CDP e e e e e e e e e . SRS, .
3.1.1 CDPCreator Parameters e
3.1.2 CDP Parameters e
3.1.3 CDP Endpoints. e
3.2 Stability Pool e
3.2.1 Stability Pool Parameters Lo
3.2.2 Stability Pool Endpoints Lo
3.3 Staking
3.3.1 Parameterso
3.3.2 Staking Endpointso
3.4 GOVEINANCE . .« v v v v et o e e e e e e e e e e e e e e e
3.4.1 Execute Script Parameterso
3.4.2 Gov Script Parameterso
3.4.3 Poll Manager Script Parameters o

3.4.4 Poll Shard Script Parameters L o 63

3.4.5 Version Record Script Parameters 63

3.4.6 Governance Endpoints 65

3.5 Collector e 71
3.5.1 Parameters L e e e e e e e e e e e e e e e 71

3.5.2 Collector Endpoints e 71

3.6 Treasury e e e e 71
3.6.1 Parameters e e e e e e e e 71

3.6.2 Treasury Endpoints L e 73

4 Known Protocol Limitations 74
4.1 Governance Contention e 74

5 Glossary 74
6 Definitions for Mathematical Notations 74
6.1 Sets e e e e R ... 76
6.2 Summation e e e e e e 76
6.3 Length of Sets o 76
6.4 Indexes e e e e e e 76
6.5 Mean of Sets e 76
6.6 Rounding e 76
6.7 Scoped Variables 76
6.8 Conditional Statements L e e e e 77
6.9 Functions e 77
6.10 Minimum and Maximums e 77

7 Minimum ADA to Create UTXO 77

1 Motivation

For most of the world’s population, important financial tools are inaccessible. This is exemplified by the fact
that two people can share the same education, perform the same work, and put in the same amount of effort,
yet not have the same development possibilities. One could have access to a share of the global economy’s
growth, while the other may be left out.

It’s brutal and unfair. Until now, borders have limited human development. With the advent of blockchain
technology, we are amid a global switch in the financial foundation we use as a society to trade and transact.
At the forefront of this transformation, we present a new solution to equalize the playing field by bringing the
world’s assets to the blockchain. This solution allows anyone to access and participate in new financial markets
and take control of their own financial destiny, paving the way for a new mantra: Tokenize Everything.

2 Introduction

This document (the “Indigo paper”) presents the Indigo Protocol (the “protocol” or “Indigo”), a synthetic
assets protocol built for Cardano'. Combining the benefits of a white paper? and a yellow paper®, the Indigo
paper provides both a high-level and detailed protocol specification for educating the Indigo community. The
Indigo paper serves as the basis to introduce Indigo and kickstart complete community management.

Indigo has been committed to a Fair Launch to bootstrap the protocol from the ground up. As part of this
initiative, no minting, pre-sale, or distribution of tokens related to the protocol have been undertaken. This
ensures that starting from launch, Indigo will be community managed.

2.1 Synthetic Assets

Indigo creates synthetic assets which are known in the protocol as iAssets (i.e., “Indigo Assets”). iAssets are
cryptocurrency assets that derive their prices from tracked assets. Prices of iAssets are influenced via protocol
rules with the intention of matching the prices of the tracked assets. One example of an iAsset is iBTC,

LCardano is a public blockchain that supports smart contracts and custom tokens utilizing an eUTXO architecture, an extension
of UTXO.

2A white paper is a marketing tool typically used to attract investors.

3A yellow paper typically contains complete specification details.

https://www.coinbase.com/learn/crypto-basics/what-is-cardano
https://docs.cardano.org/plutus/eutxo-explainer/
https://unchained.com/blog/what-is-a-utxo-bitcoin/
https://cointelegraph.com/funding-for-beginners/what-is-a-white-paper-a-beginners-guide-on-how-to-write-and-format-one
https://wikicryptocoins.com/currency/Yellow_Paper

representing a synthetic version of Bitcoin (BTC); it is designed to mimic the price action of BTC — an asset
that lives in separate ecosystem than Indigo.

2.2 Indigo Protocol

Indigo is a decentralized synthetics protocol for on-chain exposure to assets with publicly verifiable prices. Using
Cardano Plutus* smart contracts, the protocol enables the creation of iAssets. Prices of iAssets are soft pegged®
to external tracked assets; iAssets are overcollateralized in the form of a decentralized Collateralized Debt
Position (“CDP”). The protocol enforces liquidations to ensure iAssets always maintain overcollateralization,
meaning the value of the collateral in the CDP exceeds the intended value of the iAsset. In the event of a CDP
becoming undercollateralized, a liquidation reestablishes overcollateralization by confiscating the collateral of
the undercollateralized CDP and replacing it with another user’s overcollateralized CDP.

While minting an iAsset requires opening a CDP, after iAssets are minted they are freely exchangeable.
Anyone with a Cardano wallet can send or receive iAssets, regardless of whether they have an open CDP.

2.3 Benefits of iAssets

Users can gain some benefits of owning an asset without being required to obtain or own the asset themselves.
This can be useful in cases where assets are difficult for a user to obtain or for assets that live elsewhere yet
users desire to utilize on the Cardano blockchain.

iAssets can be used as building pieces to be included in a wider financial strategy. This could include being
part of derivative contracts or constructing a widely diversified portfolio in one easy to use system. Users can
make trades without requiring the underlying supply. For example, more iAsset could exist than total supply
of the real asset, allowing for leveraged trades that wouldn’t be possible to be settled using the real underlying
assets.

iAssets have the following properties:

e Tracking different type of assets and statistics; which allows the creation of many new asset classes for
emerging industries.

e No custodians; iAsset creation is fully decentralized.

e Low barrier to entry; anyone with cryptocurrency can use Indigo to mint new synthetic assets or buy and
trade them on the open market.

e Composability; iAssets can be used as a lego block, enabling their integration into a larger financial
ecosystem.

Table 1: Examples of possible iAssets

Name ‘ Description
iBTC ‘ Tracks the price of BTC on the Bitcoin blockchain
iETH ‘ Tracks the price of ETH on the Ethereum blockchain

iuSDh ‘ Tracks the price of dollar-denominated stablecoins on any blockchain

iCPI ‘ Tracks the change of the Consumer Price Index over time

Generally, an iAsset names begin with the letter “i,” followed by the name of the tracked asset.

2.3.1 Obtaining iAssets

There are two ways to obtain iAssets:

e Buying iAssets — Users directly purchase iAssets via an exchange (centralized or decentralized), thus
gaining exposure without having to request any loan.

e Minting iAssets — Users make overcollateralized loans against their cryptocurrency assets.

4Plutus is a smart contract platform for Cardano.
5A soft peg is a strategy of maintaining the value of an asset against another asset by utilizing an exchange rate mechanism.
5The Consumer Price Index is a measure of the average change over time in the prices of goods and services.

https://developers.cardano.org/docs/smart-contracts/plutus/
https://coinmarketcap.com/alexandria/glossary/soft-peg
https://www.bls.gov/cpi/

Users can buy iAssets from any exchange that has available supply. After buying an iAsset, the user gains
full control of the iAsset and can reap benefits from price possible appreciation. Users can be assured that
iAssets maintain their intended pegged prices due to Indigo’s liquidation process.

The second way for users to obtain iAssets is by minting them within the Indigo Web App by depositing
collateral and creating a loan.

2.4 Collateralized Debt Positions

Every iAsset is backed by collateral held in a Collateralized Debt Position (a “CDP”). A CDP is created by a
user locking collateral (a minimum of 10 ADA) into Indigo to mint a new iAsset. An iAsset is borrowed against
the collateral, creating a debt, and this position is watched by liquidators to ensure overcollateralization.

The value of the collateral in a CDP should always exceed a governance-based Liquidation Ratio (a “LR”).
Each iAsset type has its own LR. Both the value of the collateral and iAsset price can fluctuate over time,
potentially causing a CDP to become undercollateralized. A CDP is considered undercollateralized when its
collateral ratio (the “CR”) falls below the iAsset’s LR. The CR is the ratio of the collateral value relative to
the minted iAsset value, and can be calculated using the formula:

a—1
c =
md
or:
— Db
a1
mp
Where:

¢ is the CR used to determine solvency
e ¢ is the amount of ADA locked in the CDP

1 is the amount of ADA accrued interest on the CDP

b is the dollar-denominated price of ADA

p is the dollar-denominated price of the iAsset’s tracked asset
e d is the ADA-denominated price of the iAsset’s tracked asset

e m is the amount of iAsset minted from the CDP

When CR drops below LR, the CDP is considered insolvent and eligible for being frozen, which can then
lead to liquidation to ensure the reestablishment of solvency.

A CDP opening is also subjected to Maintenance Ratio (the ”MR”). The position will not be able to open
a position with a collateral ratio below this maintenance ratio. In a period where the iAssets are above the
intended peg reference rate. This ratio can also be lowered to LR which will allow arbitrage and maintain the
hardpeg.

2.4.1 CDP and iAsset Example

As an example, assume Violet wants to mint 100 iDOT (m). DOT is trading for $15 (p). Violet has 2,000 ADA
(a) she’s willing to use as collateral to borrow iDOT. ADA is trading for $1.28 (b).

Violet deposits 2,000 ADA into Indigo to mint 100 iDOT. A CDP is created consisting of 2,000 ADA. Violet
now owns 100 iDOT and owes 100 iDOT to Indigo. Violet can still earn staking rewards from her 2,000 ADA,
but cannot transfer it because it now is used as collateral. To regain control of her ADA, Violet must return
100 iDOT.

Violet’s CR is "171%:

ab 2000 x 1.28 o1l
mp 100 x 15
As the price of either DOT or ADA changes, CR changes too. When CR drops below the iDOT’s LR,

Violet’s CDP is subject to liquidation.
If the price of ADA increases to $1.40 (b) and DOT increases to $19 (p), then Violet’s CR drops to ~147%:

CcC =

2000 x 1.4 147
100 x 19

If the iDOT LR was 150%, Violet’s CDP could be liquidated. Upon liquidation, Violet would lose her 2,000
ADA collateral deposit. Violet could still have her 100 iDOT, worth $1,900 ($19 x 100). The 2,000 ADA she
lost would be worth $2,800 ($1.40 x 2000). Therefore, Violet could have lost $900 of value ($2,800 - $1,900).

To have prevented liquidation, Violet needed to either add more ADA into her CDP to increase its CR, or
close the CDP by returning the 100 iDOT she borrowed.

2.4.2 CDP Actions and States

Several actions can be taken against a CDP by users of the protocol:

e Open Position — Creates a CDP by a user depositing a minimum of 10 ADA as collateral, and associates
it with an iAsset type that can be minted. The user who creates the CDP becomes the CDP’s owner.

e Deposit Collateral — An owner can increase CR by depositing more collateral.

e Withdraw Collateral — An owner can lower CR by withdrawing part or all the collateral. Collateral
cannot be withdrawn if it brings CR below the iAsset’s MR. If a CDP has no debt (i.e., no minted iAsset)
and all collateral is withdrawn, then the CDP is closed.

e Borrow iAsset — An owner can lower CR by minting an iAsset. This increases the amount of debt
against the CDP. More iAsset cannot be minted if it brings CR below the iAsset’s MR.

e Repay Debt — An owner can increase the CR by repaying debt in the form of iAsset. When the debt is
repaid, the iAsset is burned (i.e., destroyed). More iAsset cannot be burned than debt owed by the CDP.

e Freeze — If CR is below the iAsset’s LR, any user can submit a transaction for that CDP to be frozen.
Upon freezing, a CDP is no longer usable or interactable by its former owner. The former owner loses all
access and rights to the CDP.

e Liquidate — If a CDP is frozen, any user can submit a transaction for that CDP to be liquidated. Upon
liquidation, CDP debt is repaid by withdrawing iAsset from a Stability Pool. As debt is repaid, collateral
is withdrawn from the CDP. If all debt is repaid, then all collateral is withdrawn, and the CDP is closed.

e Merge — If two or more CDPs are frozen, any user can submit a transaction for them to be merged into
one CDP. Upon merging, all but one of the CDPs requested to be merged are closed, and their debt and
collateral are transferred into a single CDP.

e Redeem — If CR is below the iAssets redemption margin ratio, any user can redeem the debt of that
CDP for some of it’s collateral at the current oracle price.

A CDP has the following states:

e Open — A CDP that is fully collateralized, with its CR value above the iAsset’s LR. Open CDPs remain
fully usable by their owners.

e Insolvent — A CDP that is undercollateralized, with its CR value below the iAsset’s LR. Insolvent CDPs
remain fully usable by their owners but eligible to be frozen by any user.

e Frozen — A CDP that has been confiscated by the protocol and no longer has an owner. A CDP becomes
frozen after a user successfully submits a request against an insolvent CDP. Frozen CDPs cannot be used
by their former owners.

e Closed — A CDP whose CR value is zero, no longer having any collateral or debt. A CDP is closed after
all its debt is repaid and its collateral is withdrawn.

2.4.3 CDP Liquid Staking

Indigo supports liquid staking of ADA collateral within CDPs, allowing users to continue earning ADA rewards
from the Cardano network on top of utilizing the benefits of iAsset minting. This improves capital efficiency and
doubles reward capabilities — rewards earned from Cardano, and rewards earned from Indigo. Liquid staking is
a unique capability offered by Indigo and will help attract liquidity from outside of the Cardano ecosystem to
encourage more participation, bringing iAssets to a wider audience.

To use liquid staking, users must first have their Cardano wallet staked to their preferred stake pool®. The
Indigo Web App automatically attaches the user’s staking key when creating a CDP. All ADA deposited into
that CDP will continue to earn staking rewards from the user’s chosen stake pool, accruing in the user’s wallet.

6Indigo supports any Cardano stake pool. A stake pool is a Cardano network node that forms the basis for consensus on the
blockchain. Users can delegate their ADA to stake pools to earn ADA rewards from the Cardano network.

https://cardano.org/stake-pool-delegation/
https://www.adastrong.com/staking/

If the user delegates their wallet to a new stake pool after creating the CDP, the CDP will automatically
earn rewards from the new stake pool.

2.4.4 CDP Redemption

With the transition to V2, Indigo Protocol will be introduce a variant of redemption. This allows for a direct
path to arbitrage the peg.

iAssets have an adjustable parameter Redemption Margin Ratio. This is a limit based parameter which will
allow more flexibility for both users and protocol to maintain their needs and requirements and can serve as
micro adjustments to the peg together with other pegging mechanisms.

Redemptions work by allowing a user to bring their owned iAssets and redeeming those iAssets for the
collateral of redeemable CDPs. CDPs are redeemable when their collateral ratio is below the Redemption
Margin Ratio. When doing a redemption, the redeemer is burning an iAsset, essentially paying off the debt of
a CDP by withdrawing an equal value (based on oracle price) of collateral from that CDP. Redeemers are only
able to redeem enough to bring the redeemed CDP’s collateral ratio at or below the RMR.

To calculate the amount of iAsset redeemable, you can use this formula:

(5rem)
r—1

xTr =
Where:

e z is the amount iAsset redeemable for this CDP

e c is the amount of collateral attached to the redeemed CDP
e m is the amount of debt attached to the redeemed CDP

e p is the oracle price (in lovelaces) of the iAsset

e 7 is the redemption margin ratio (in percentage) set for the iAsset

Redemption CDP Reimbursement Fee At the time of redemption, a small fee is taken from the redeemed
collateral and returned back to the CDP as an incentive for CDP owners to allow their CDPs to be redeemed.
This value is adjustable by the DAO by adjusting the iAsset parameters.

Redemption INDY Staker Fee Similar to the Redemption CDP Reimbursement Fee, when a CDP has
been redeemed, a percentage of the the redeemed collateral is sent the the Collector contract to be distributed
to INDY stakers as a protocol fee sharing mechanism.

2.4.5 CDP Interest

While redemption offers a hard peg on the floor of iAsset prices, it isn’t unlimited in nature as well as resulting
in changes in users CDP position which can reduce the use case of a CDP.

Further incentives for peg to stay above this hard peg will also help to prevent excessive redemption.

Staking of Cardano provides a risk-free rate to depositors. Allowing users leverage for free without concern
for the risk free rate can result in too many people trying to leverage the system traditionally.

With an interest mechanism, this interest rate seek to influence the peg via interest rate.

With interest charged on loans, this allows for positions to gravitate towards their liquidation point and
prevents excessive leverage.

2.5 INDY

The Indigo DAO Token (“INDY”) is a Cardano native asset that can be owned, held, or transferred by any
user. INDY serves as Indigo’s utility token, with one of its key purposes being to allow on-chain voting on DAO
proposals (a “proposal”)”. The total supply of INDY is 35M with a 6 decimal precision. INDY’s monetary
policy disallows future minting and burning, therefore making the total supply constant and unchanging. Indigo
is undergoing a Fair Launch, therefore there has been no pre-sale nor private distribution to investors prior to
launch.

INDY will be distributed every Cardano epoch (five days), over a period of five years. There will be three
distribution schedules for the community:

e Governance Distribution — Users who opt to stake their INDY into Indigo and participate in DAO
Governance by voting on proposals will be eligible for INDY rewards proportionally to their pro-rata share
of staked INDY.

e Stability Pool Distribution — Users who stake their iAssets in Stability Pools to ensure the protocol’s
solvency will be eligible for INDY rewards proportionally to their pro-rata share of staked iAssets.

e Liquidity Distribution — Users who provide liquidity in DEXes will be eligible for INDY rewards
proportionally to their pro-rata share of staked LP tokens.

31M

26M

21M

16M

INDY

11M

6M

™M
21-Nov-22 21-May-23 21-Nov-23 21-May-24 21-Nov-24 21-May-25 21-Nov-25 21-May-26 21-Nov-26 21-May-27 21-Nov-27

Date

Figure 1: Distribution of INDY over five years

"The usage of INDY and the process of voting is described further in the Indigo DAO Constitution and Voting Procedures.

https://github.com/IndigoProtocol/indigo-dao

2.5.1 Fair Launch

Indigo has approached its tokenomics and launch from a new perspective, with a focus on gaining community
trust first, allowing the protocol to be built with a vision of fairness. Early supporters of Indigo will be among
the first receivers of INDY for use within the protocol. INDY will be distributed predominantly to users of the
project, rather than investors or special insiders.

After being in development for almost two years without investor funding, the initial Core Contributors of
Indigo who have built the codebase — and will continue to improve, optimize, and develop new features — will
receive tokens vested over two years beginning the day of mainnet launch.

Indigo has not minted, sold, allocated, distributed, or promised any tokens to third parties. The purpose of
INDY is to be used within the protocol; until the launch of mainnet, there is or has been no use for INDY to
be distributed or sold. Indigo’s Fair Launch has helped alleviate community concerns over rug-pulling or the
team not delivering a useful and highly functional product. No purchasing of tokens will be possible until the
community has an opportunity to see and use Indigo for themselves.

Indigo’s Fair Launch is a novel approach to bootstrapping liquidity, allowing the Indigo community to
become highly collaborative, driven, and vibrant. This is evidenced by the Indigo DAO Kickstart — an effort to
decentralize the launch of Indigo — which has received wide praise. This approach bolsters Indigo’s core tenet
of decentralization, making the launch itself a decentralized decision involving possibly thousands of individuals
from around the world. Indigo will be governed by the community immediately upon launch. There will be
no barriers for use. Anyone, regardless of traits, will be able to gain benefit from Indigo’s iAssets. Indigo has
established a new framework to allow for community-led projects to come to life, which will be used to generate
INDY in as fair of a manner as possible.

2.5.2 Token Generation Event

Indigo’s Token Generation Event (the “TGE”) will occur upon the beginning of, and at no point prior to,
deployment of the Indigo Protocol to mainnet (which is currently anticipated to be November 20", 2022).
Upon minting of INDY, the Initial Token Distribution (the “ITD”) will be as follows:

e 350,000 INDY to two or three DEXs approved by the Indigo community
e 350,000 INDY to participants within the Indigo community

e 21,000,000 INDY to one or more wallets (administrated by Indigo Laboratories, Inc. at the direction of
the Indigo Foundation on behalf of the Indigo DAO) to be used for the sole purpose of community rewards
distributions (Stability Pools, Liquidity, and Governance)

e 4.550,000 INDY to the DAO Treasury Reserve

e 8,750,000 INDY will be allocated to Indigo Laboratories, Inc. for future building, administering, and
further developing the protocol, with 7,875,000 being distributed to team members under a two-year
monthly vesting schedule

At launch, the circulating supply of INDY?® will be 1,903,125; 350,000 of which being allocated to Cardano
DEXSs via an Initial Liquidity Event.

2.5.3 Initial Liquidity Event

Indigo’s Initial Liquidity Event (the “ILE”) will distribute and make INDY publicly available. The ILE will
consist of three phases in conjunction with the launch of Indigo:

1. Airdrop
2. Liquidity Bootstrapping Event (the “LBE”)

3. Liquidity Pool Creation

8A full detailed spreadsheet of the distribution of INDY with specific dates and allocations can be found in the open source
indy-tokenomics project.

https://github.com/IndigoProtocol/indy-tokenomics

Protocol Owned Liquidity
1%
DAO Treasury
13% Stability Pool Rewards
40%

Airdrop
1%

Team
25%

Governance Participation
5% iAsset Liquidity Staking
15%

Figure 2: Allocation of INDY

Indigo Airdrop Indigo’s airdrop will distribute 350,000 INDY to participants within the Indigo community.
The airdrop will consist of two phases:

1. Distribution to early participants of the Indigo community
2. Distribution to stakers supporting the decentralization of Cardano and Indigo

Each phase will be distributed 175,000 INDY. Cardano wallet addresses have been collected by Indigo
Laboratories, Inc. (the “Labs”) and will be forwarded to Vending Machine.? The Labs will send 350,000 INDY
to Vending Machine, who will subsequently distribute INDY to qualified recipients via the Indigo Web App.

To redeem airdropped INDY, qualified users will need to connect their wallet to the Indigo Web App and
follow the in-app instructions to withdraw INDY into their wallets. Users will be able to determine whether
they qualify for the airdrop upon connecting their wallets and navigating to the appropriate reward page. Users
will have until March 315¢ 2023 to withdraw their INDY rewards into their wallets. Any INDY not withdrawn
by this time will not be eligible to be withdrawn by users and instead will be subject to redistribution by the
Labs.

Members or affiliates of the Labs or Indigo Foundation make no promises on the distribution of tokens. No
action or series of actions guarantees a user to receive INDY.

Airdrop 1: Distribution to Early Participants Qualified participants for Airdrop 1 fit into either one of
two categories:

1. Participants who showed their interest by successfully completing each of the processes, which were:

(a) Participate in Indigo’s first temperature check in the Indigo Forum
(b) Connect their Indigo Forum account with their Discord account

(¢) Complete the Indigo Quiz to become an Indigo Guru
2. Participants who aided the Indigo community, as identified by the Labs’ team

172,751.924982 INDY is to be distributed to wallets that fit into the first category, and 2,248.07304 INDY
is to be distributed to wallets that fit into the second category. A total of 3,458 wallets qualified for the first
category, and 30 wallets qualified for the second category.

Addresses deemed to be suspicious or fraudulent were removed from the first category.

9Vending Machine is a Cardano token distribution system.

https://forum.indigoprotocol.io/t/indigo-initial-token-distribution-vote/1399
https://quiz.indigoprotocol.io/
https://vm.adaseal.eu/about

Airdrop 2: Distribution to Decentralization Stakers 175,000 INDY will be distributed as a reward to
users who helped boost decentralization of the Cardano network by staking with a member of the Cardano
Single Pool Alliance (CSPA). To have qualified for receiving this reward, a user had to have been staking a
minimum of 10 ADA in one of 357 pools on November 67, 2022. A total of 79,679 wallets qualified to be eligible
to withdraw rewards. Each user who connects a qualified wallet to the Indigo Web App will be eligible for a
one-time withdrawal of 5 INDY on a first come first serve basis.

Indigo Liquidity Bootstrapping Event and Liquidity Pool Creation In partnership with Minswap,
Indigo will begin a Liquidity Bootstrapping Event (the “LBE”) on November 14" 20221°. The goal of the LBE
is to use a decentralized and transparent process to discover a fair price for INDY. After the LBE starts, users
can deposit ADA into the Minswap Launch Bowl. Deposited ADA will be used to create INDY /ADA Liquidity
Pools (a “LP”).

The Minswap LP will consist of 75% of deposited ADA in the LBE paired with 262,500 INDY. Depending
on slippage analysis at the time of the LBE end date of November 20" 2022, 25% of deposited ADA in the
LBE paired with 87,500 INDY will be used to create LPs on either one or two DEXs approved by the Indigo
community.

2.5.4 Indigo Rewards

Stability Pool stakers contribute to maintaining the solvency of the protocol and the iAsset pegs. In return
for staking their iAsset, Indigo offers rewards in the form of ADA from liquidated CDPs and INDY. INDY is
rewarded each Cardano epoch (every five days) and determined by the market cap of the iAsset as well as how
much iAsset is being staked relative to other iAssets. The less iAsset that is staked in a Stability Pool relative
to the total number of iAsset minted, the higher the INDY reward; the more iAsset that’s staked, the less the
INDY reward.

A benefit of iAsset composability is that they can be provided as liquidity to any Decentralized Exchange
(a “DEX”). Having iAssets available on several DEXs is a key factor to promote Indigo’s integration into the
broader ecosystem, allowing other users to obtain and use iAssets without having to manage a CDP.

Users who provide liquidity to DAO voted DEXs and participate in the DEX farming program. Indigo
rewards users who provide iAsset liquidity by having the DAO to vote on rewards allocation towards choice
DEXSs and receive INDY rewards.

Members who participate in Governance by casting a vote at least once every ninety days (configurable itself
by Member vote) are rewarded with INDY each epoch. Each epoch, INDY is unlocked and distributed to all
qualifying Members. The amount of INDY each Member receives is based on the ratio of a Member’s stake
relative to the total amount of INDY staked

Where:

e ¢ is the amount of INDY a Member is rewarded

e b is the amount of INDY a Member has staked

e ¢ is the amount of INDY rewarded to all Members for the epoch

e m is the collection of INDY amounts staked by all Members

Table 2: Distribution schedule of INDY unlocked every epoch for
Stability rewards

Category ‘ # INDY per Epoch
Liquidity | 33563

Governance ‘ 2398

Users can withdraw their accumulated INDY staking rewards (the sum of a for each epoch they’re owed
rewards) via the Indigo Web App. Unclaimed rewards are withdrawable for three months. Any rewards not
claimed within three months after being rewarded are redistributed by DAO vote.

10More information about Indigo’s LBE will be available on Indigo’s Medium.

10

https://singlepoolalliance.net/
https://singlepoolalliance.net/
https://minswap.org/
https://indigoprotocol1.medium.com/

2.6 Stability Pools

A Stability Pool (a “SP”) helps maintain iAsset solvency by acting as the source of liquidity to repay debt from
liquidated CDPs, thus intending all minted iAsset supply to remain overcollateralized.

Every supported iAsset has its own SP (e.g., iBTC SP, iETH SP). A user can deposit corresponding iAsset
into a SP to become a SP staker (a “SP staker”). SP stakers provide stability to the protocol by offering their
iAssets to be used for liquidations.

SP Liquidation (“SPL”) is the process of utilizing a SP to liquidate a CDP, where iAsset deposited in
a SP are burned to repay the debt of an undercollateralized CDP. In exchange, SP stakers earn a share of
the collateral that was confiscated from liquidated CDPs. When CR falls below the iAsset LR, the CDP is
considered insolvent and subject to liquidation, which amounts to canceling the debt where:

1. the same amount of iAsset debited by the CDP is burned from the corresponding SP; and

2. the collateral from the CDP is proportionally distributed to SP stakers.

As CDPs become liquidated, SP stakers lose a pro-rata share of their iAsset deposits while gaining a pro-rata
share of the liquidated collateral. An incentive for SP stakers to participate in SPL is the possibility of earning
net gains from liquidations. Under normal circumstances, the value of the collateral earned may be greater than
the value of the canceled debt, because a liquidated CDP is likely to have a CR value above 100% (the value of
the iAsset).

SPL first requires that CDPs are frozen. Each liquidation request of a CDP is executed against its iAsset’s
associated single SP. Optionally, users can make requests for CDPs to be merged. As illustrated in the CDP
merge figure, three CDPs could be merged into a single CDP. The resulting merged CDP can then be liquidated
against the SP. While only a single liquidation can occur per SP at once, multiple CDPs can be merged in
parallel. Merging CDPs effectively enables multiple frozen CDPs to be liquidated simultaneously.

CDP CDP CDP
iAsset: iBTC iAsset: iIBTC iAsset: iIBTC
State: Frozen State: Frozen State: Frozen
Debt: 4.835558 iBTC Debt: 3.062486 iBTC Debt: 1.863504 iBTC
Collateral: 241.777900 ADA ‘ Collateral: 150.061814 ADA Collateral: 95.038704 ADA

iAsset: iBTC

State: Frozen

Debt: 9.761548 iBTC

Collateral: 486.878418 ADA

Figure 3: Three CDPs being merged into one

Indigo allows for both full and partial liquidations. A full liquidation, as illustrated in the SPL figure, repays
all debt of a CDP and closes the CDP. A partial liquidation, as illustrated in the partial SPL figure, repays
some debt of a CDP and keeps the remaining position frozen. If a CDP debt is higher than the entire amount
of iAssets in the related SP, the protocol attempts to cancel as much debt as possible with the iAsset supply
available. Any remaining non-liquidated collateral and debt of the CDP remains frozen until more iAsset is
deposited into the SP and another liquidation is initiated.

11

CDP Stability Pool

iAsset: iBTC iAsset: iBTC
State: Frozen Liquidity: 27.835204 iBTC
Debt: 9.761548 iBTC Rewards: 0 ADA

Collateral: 486.878418 ADA

Liquidation
CDP Stability Pool
iAsset: iBTC iAsset: iBTC
State: Closed Liquidity: 18.073656 iBTC
Debt: 0 iBTC Rewards: 486.878418 ADA
Collateral: 0 ADA

Figure 4: Illustration of a full liquidation where sufficient funds are present in the SP

CDP Stability Pool
iAsset: iBTC iAsset: iBTC
State: Frozen Liquidity: 6.042953 iBTC
Debt: 9.761548 iBTC Rewards: 0 ADA
Collateral: 486.878418 ADA

Liquidation
CDP Stability Pool
iAsset: iBTC iAsset: iBTC
State: Frozen Liquidity: 0 iBTC
Debt: 3.718595 iBTC Rewards: 301.405412 ADA
Collateral: 185.473006 ADA

Figure 5: Illustration of a partial liquidation where there are insufficient funds present in the SP

12

Values for the liquidated CDP and associated SP can be calculated using:

w = a— min{a,b}

d

z=d—min{a,e} —

a

y=e—min{a,e}

, d

z=g+ min{a,e} —

a

Where:

e w is the updated debt of the CDP after liquidation

x is the updated amount of collateral in the CDP after liquidation

y is the updated amount of iAsset in the SP after liquidation

z is the updated amount of ADA rewarded to the SP after liquidation
e ¢ is the amount of debt of the CDP before liquidation

b is the amount of iAsset in the SP

d is the amount of collateral in the CDP before liquidation

e is the amount of iAsset in the SP before liquidation

g is the amount of ADA rewarded to the SP before liquidation

2.6.1 Stability Pool Staking Fees

Users can stake and unstake iAssets from SPs at any time. To stake iAsset, a user needs to create a SP account
by depositing 7 ADA and the amount of iAsset they desire to stake. 2 ADA is returnable to the user upon
closing the SP account, which involves withdrawing all their iAsset and earned rewards. 5 ADA is taken as a
fee. Users pay a 1 ADA fee for each new iAsset deposit or withdraw against their SP account.

SP fees are collected and distributed to all SP stakers as part of liquidation rewards.

2.6.2 Stability Pool Withdraw Fee

Users can also be charged a withdrawal fee modifiable by DAO for the Stability Pool to counteract potential
reward gaming and ensure efficient processing of liquidations. This fee could be redistributed as a loyalty bonus
to other Stability Pool Providers deposited in the pool at the time of withdrawal.

For instance an inconvenience fee of 0.5% is charged for withdrawal.

Given the withdrawal is in iAssets, the fee can be charged, and retain each individual iAssets Stability pool
to the DAO UTXO.

a=bxc
e a is the fee retained in the Stability Pool

e b is the current withdrawal fee constant

e ¢ is the amount of iAsset withdrawn from the SP

2.6.3 Stability Pool Liquidation Rewards

As liquidations occur, SP stakers lose a pro-rata share of iAsset deposits and gain a pro-rata share of ADA
rewards. A SP “product constant” maintains mathematical state of liquidations occurred. When a SP is first
created, its product constant is set to one. Upon liquidation, the product constant can be calculated using the
formula:

‘Where:

13

c is the new product constant

e ¢ is the current product constant

b is the amount of iAsset debited from the SP for the liquidation

e d is the total amount of iAsset in the SP

A SP “compounded constant” maintains the mathematical state of rewards earned from liquidations relative
to the product constant. When a SP is first created, its compounded constant is zero. Upon liquidation, the
compounded constant can be calculated using the formula:

be
r=a-+ —

d
Where:

e 1 is the new compounded constant
e ¢ is the current compounded constant

e b is the amount of ADA earned during the liquidation

c is the product constant before the liquidation

e d is the total amount of iAsset in the SP before the liquidation

When an action is taken against a SP, such as a deposit of an iAsset or a liquidation, its state is updated.
The SP state data structure — represented in the SP state table — is stored within the UTXO of the SP; “iAsset
Deposit” records the number of iAsset in the SP deposited by all users.

A SP epoch ends when all iAsset from a SP is drained via liquidations. Epoch is a running tally of the
number of occurrences there have been when the SP’s total iAsset deposit reached zero. Upon updating the SP
state, if the total iAsset in the SP is to be set to zero, then this marks the end of an epoch. At the end of an
epoch, the following occurs:

e Epoch is recorded in a UTXO paired with the compounded constant value after the latest liquidation

e The SP state is updated with the values:

epoch incremented by one;
— product constant set to one; and

— compounded constant set to zero.

Table 3: State stored upon updates to a SP

Name ‘ Description

Product Constant | The new product constant (c)

Compounded Constant ‘ The new compounded reward (r)

iAsset Deposit \ The updated amount of iAsset deposited into the SP

Epoch ‘ The current epoch

When a user deposits iAsset into a SP, a SP staker “account record” is created or updated for that user’s
account. The account record is represented the same as SP state and stored within the UTXO of the SP staker’s
position; iAsset Deposit records the number of iAssets owned individually by the SP staker. All other values
for the account record are copied from the SP state.

14

Stability Pool

Product Constant = 1
Compounded Constant = 0
iAsset Deposit = 0

Epoch =0

4

Users deposit iAssets

AN

User 1: +1 iAsset

l

User 1

Product Constant = 1
Compounded Constant = 0

iAsset Deposit = 1

Epoch =0

User 2: +2 iAsset

l

User 2

Product Constant = 1
Compounded Constant = 0
iAsset Deposit = 2

Epoch =0

Stability Pool is updated

4

Stability Pool

Product Constant = 1
Compounded Constant = 0
iAsset Deposit = 3

Epoch =0

Figure 6: 1Asset being deposited into a new SP

15

Stability Pool

Product Constant = 1
Compounded Constant = 0
iAsset Deposit = 3

Epoch =0

\ 4

1 iAsset is liquidated

B

/ +100 ADA
N,

Stability Pool is updated

-1 iAsset

\ 4
Stability Pool

Product Constant = 0.6'
Compounded Constant = 33.3'
iAsset Deposit = 2

Epoch =0

Figure 7: SP state being updated after a liquidation occurs

16

During a liquidation, iAsset is extracted from a SP. Proportionally, the ownership share of the iAsset within
each SP staker’s position is reduced. If the epoch in the account record matches the epoch in the SP state, the
amount of iAsset an individual SP staker holds can be calculated using:

Where:

e m is the amount of iAsset owed to the SP staker

e a is the amount of iAsset the SP staker deposited (retrieved from the account record)
e c is the current product constant (retrieved from the SP state)

e b is the product constant when the SP staker deposited their iAsset (retrieved from the account record)

User 1 User 2
Product Constant = 1 Product Constant = 1
Compounded Constant = 0 Compounded Constant = 0
iAsset Deposit = 1 iAsset Deposit = 2
Epoch =0 Epoch =0
Stability Pool Calculate values Calculate values
Product Constant = 0.6' l l
Compounded Constant = 33.3"
. . User 1 User 2
iAsset Deposit = 2 |
iAsset = 0.666666 iAsset = 1.333333
Epoch =0
’ Reward = 33.333333 Reward = 66.666666

Figure 8: SP staker rewards after a liquidation has occurred

If the epoch in the account record does not match the epoch in the SP state, then the amount of iAsset
owned to the SP staker (m) is zero. This is due to all the user’s iAsset having been burned during a previous
epoch.

During a liquidation, an ADA reward is deposited into the SP. Proportionally, the share of ADA rewards
each SP staker is owed increases. The formula to calculate how much ADA an individual SP staker is rewarded
from the SP is:

Where:
e [is the amount of ADA owed to the SP staker
e a is the amount of iAsset the SP staker deposited (retrieved from the account record)

e 7 is the current compounded constant (retrieved from the SP state or recorded compounded constant for
the matching epoch)

e d is the compounded constant when the SP staker deposited their iAsset (retrieved from the account
record)

e b is the product constant when the SP staker deposited their iAsset (retrieved from the account record)

If an account record’s epoch does not match the epoch of the SP state, then r is set to the latest recorded
compounded constant for the epoch. This is due to the compounding constant resetting to zero after an epoch
ends, therefore all SP staker positions during that epoch would be closed because all their iAsset would have
been utilized during liquidations.

When a SP staker modifies their position, either by depositing or withdrawing iAsset or ADA reward, then
their previous position is considered closed, and a new position is created. If a user withdraws all their iAsset,
then a new position is not opened. The SP state is also updated to reflect the new deposit or withdrawal, i.e.,
the iAsset Deposit is updated by the amount of iAsset deposited or withdrawn.

17

Stability Pool

Product Constant = 0.6'
Compounded Constant = 33.3'
iAsset Deposit = 2

Epoch =0

\ 4

2 iAsset is liquidated

AN

/ +200 ADA
S

Epoch is ended

-2 iAsset

\ 4

Creates Epoch 0
Epoch recorded ~ F----------3

Compounded Constant = 100

\ 4

Stability Pool is updated with new epoch

\ 4
Stability Pool

Product Constant = 1
Compounded Constant = 0
iAsset Deposit = 0

Epoch = 1

Figure 9: Illustration of a new SP epoch beginning after a liquidation drains all iAsset

Stability Pool User 1 User 2
Product Constant = 0.5' Product Constant = 1 Product Constant = 1
Compounded Constant = 44.4' Compounded Constant = 0 Compounded Constant = 0
iAsset Deposit = 20 iAsset Deposit = 1 iAsset Deposit = 2
Epoch =1 Epoch =0 Epoch =0

A A
Epoch 0 Calculate values Calculate values

Compounded Constant = 100

\ 4 \ 4
User 1 User 2
iAsset =0 iAsset =0
Reward = 100 Reward = 200

Figure 10: SP staker rewards after SP has been drained and a new epoch has begun

18

2.6.4 Liquidity State Transitions

The Stability Pool mechanism requires the use of a single UTxO to store the state of the pool. This global state
leads to contention against the Stability Pool UTxO. Liquidity State Transitions is a design pattern implemented
for the Stability Pool contracts to essentially eliminate the contention of users who are attempting to interact
with the Stability Pool.

Liquidity State Transitions take the approach of separating the action of the user into two steps: a request
transaction and an execution transaction.

/ stability Pool \ / stability Pool \
)

UTxO UTxO
. N

Execution Transaction
/

~ Stability Pool\ / Stability Po(m
Stability Pool \ Account UTxO / Account UTxy
Qccoum UTxO \ / \7

+/ Tx Fees for Execution
+/ User Request

A

Users
Change from
Tx Fees

_— Request Transaction

User funds to
pay Tx Fees

Figure 11: Transaction flow of a Liquidity State Transition transaction

Referencing the above figure, instead of processing the request and execution of the stability pool adjustment
in the same transaction, we separate it into two transactions. This method greatly increases the assurance that
the user’s intended action will be executed on the Cardano blockchain, rather than being impeded due to the
submission of a contentious transaction.

Once the request is recorded on-chain, it can then be executed by any user who wants to process the request
against the Stability Pool, including the requestor.

Additionally, there are two ancillary benefits with LST:

1. Executing requests can be transaction-chained against other executions; and

2. The user never has to re-sign an execution with their wallet if a preceding transaction fails due to
contention.

Since the execution doesn’t require a wallet signature and has the potential to be transaction-chained, we
increase our throughput by processing multiple executions against a Stability Pool in a single block.

Cardano Blockchain

Block #1 Block #2
Stability Pool Stability Pool Stability Pool Stability Pool Stability Pool Stability Pool
Request #1 Execution #1 Request #2 Execution #2 Execution #3 Execution #4
Stability Pool Stability Pool Stability Pool Stability Pool Stability Pool
Request #3 Request #4 Request #5 Request #6 Request #7

Figure 12: Example of how multiple Stability Pool transactions can be stored in a single block

As shown in the above figure, submitting requests and executing requests can both fit into a single block,
which means that a request can be executed just as it is now, however, it simply occurs in two separate
transactions.

2.7 Oracles

To determine the value of collateral held within CDPs and the intended prices of iAssets, Indigo makes use
of Oracles'! available on Cardano. An Oracle queries external data sources for information and makes that
information available on-chain.

11 Oracles provide a way for decentralized blockchain applications to access existing data sources.

19

https://chain.link/education/blockchain-oracles

Indigo is designed to be Oracle agnostic, meaning that it can support any Oracle that publishes data on the
Cardano blockchain so long as the data format conforms with the protocol’s specifications defined in the CDP
section.

2.8 iAsset Price Stability

iAssets are pegged to tracked assets. To maintain price pegs, Indigo relies on protocol rules to incentivize
arbitrageurs and market forces to stabilize prices. These rules ensure that iAssets are always fully collateralized,
giving further confidence to users that iAsset prices will match their counterparts.

Periodically, Indigo receives price data from the outside world via Oracles. The rate at which price feeds are
updated is configurable, and at launch will be set to once per hour. After price is updated, CRs are adjusted
across the protocol, allowing for liquidations to occur for CDPs whose CR falls below the iAsset’s LR.

2.8.1 Managing Liquidation Ratio for Peg

If an iAsset drops in price relative to its peg, it provides CDP owners an opportunity to buy the iAsset to repay
their loan at a discount. This can cause buying pressure on the iAsset to rise its price. If there is an abundance
of iAsset supply, Indigo can increase LR towards the iAsset mode CR.

Each CDP has its own CR. The iAsset mode CR represents the most frequent CR value users select for their
CDPs. By moving LR towards the mode CR, probability of liquidation increases, incentivizing users to close
their CDPs, which can cause iAsset buying pressure and reduced iAsset supply.

A higher LR results in a higher liquidation risk, reduces the maximum leverage utilizable, and increases the
margin of arbitrage value for Stability Pool stakers. This encourages CDP owners to be more prudent with
their positions and incentivise CDP owners to reduce their debts.

A low LR reduces the cost of minting iAsset supply and maximizes the leverage utilizable. This creates an
incentive for users to create new iAsset supply, hence is why Indigo’s iAssets will initially be launched with a LR
of 110%. An iAsset LR of 110% forces the price of the iAsset to be no more than 10% above its peg by creating
an arbitrage opportunity. Users at any time can mint iAsset at a cost of 10% higher than the iAsset’s pegged
price, allowing iAsset to be immediately sold if the market premium is higher than 10%. iAsset trading above
its peg also offers an opportunity to borrow at a lower cost, further incentivizing more supply to be minted and
possibly creating additional sell pressure if users choose to take advantage of the leverage.

2.8.2 Managing Maintenance Ratio for Peg

Maintenance Ratio, a parameter attached to the iAsset, caps the maximum permissible debt that can be secured
against a given amount of collateral. The MR can be set to be equal to the Liquidation Ratio (LR) to effectively
disable it, allowing its activation only when necessary to control excessive minting. This approach mirrors the
impact of minting fee adjustments, but specifically targets positions with lower collateralization.

If there is an abundance of iAsset demand and limited supply, Indigo can decrease MR towards LR%. This
in turn reduces the cost of minting iAsset, pushing the price of the iAsset down. Indigo’s quick liquidation
mechanism via Stability Pools allows for high capital efficiency and support for very low collateralization while
still providing incentive for users to participate in arbitrage. MR value setting considers the LR of iAssets,
ensuring that iAssets are always overcollateralized irrespective of any market conditions or possible future
events

2.8.3 Managing Interest Rates for Peg

Implementing an interest rate on CDPs adds a crucial layer of stability, encouraging responsible borrowing
and timely repayment. If the peg oscillates frequently around the redemption rate. The base interest can
be increased. By increasing or decreasing interest, the Indigo DAO can choose whether to incentivize or
disincentivize the minting or spot buying of $iUSD and by how much. A heightened interest rate applies when
redemption occurs implying depeg situation.

Having a cost associated with opening debt encourages debtors to repay their debts.

2.8.4 Managing Redemptions for Peg

Redemption Margin Ratio for all assets which can be adjusted individually. This mandatory RMR can act as a
safeguard to maintain peg stability, reducing the risk of total collateral losses without reducing capital efficiency.
Raising the RMR has a milder effect on positions compared to raising the LR. For example, if a position is
at 200%, raising the LR to 200% would liquidate the position, resulting in a complete loss of net equity (50%).
Conversely, increasing the RMR to 200% only exposes the position to potential net equity returns of 50%.

20

2.9 Governance

Governance is the decentralized voting process through which proposals for updating the protocol are introduced
and either accepted or rejected by the community (collectively known as the “Indigo DAO”). All change to the
protocol must go through governance.

Indigo has a 3-pillar structure built for long term sustainability:

1. Indigo DAO — Decentralized association of members governing the protocol.

2. Indigo Foundation — Foundation Company incorporated in the Cayman Islands for interacting with
the real-world on behalf of the Indigo DAO.

3. Indigo Laboratories, Inc. — A Wyoming corporation contracted by the Indigo Foundation responsible
for development of Indigo and blockchain technologies.

2.9.1 Indigo DAO

The Indigo DAO (the “DAQ”) is an informal non-jurisdictional, non-hierarchical, and nonprofit association of
fluctuating individuals and entities who are uncoordinated and act together using a token. The DAO owns
and controls the Indigo Protocol. All changes to the protocol must go through governance. Governance is
the decentralized voting process through which proposals for updating the protocol are introduced and either
accepted or rejected by the Indigo DAO Members.

INDY serves as Indigo DAO’s utility token with one of its purposes being to allow voting on DAQO proposals.
Users who stake their INDY in Indigo’s governance thereby become a DAO Member (a “Member”) and can
vote on proposals.

Members who wish to assist in managing the administrative and technical operations of Indigo (e.g.:
organizing meetings of Members, submitting governance Proposals, or leading Working Groups) can be elected
by other Members and become Core Contributors.

Protocol Working Group Protocol working group (PWGQG) is elected by the community, the members can
be expanded or removed via a DAO vote. The role of PWG involves gathering of community feedback and
assisting to setup proposals

Technical Working Group Technical working group (TWG) is elected by the community, the members can
be expanded or removed via a DAO vote.
The role of TWG is to provide technical input on behalf of the community

2.9.2 Indigo Foundation

The Indigo Foundation (the “Foundation”) entity provides an extremely flexible framework that supports off-
chain functions necessary for executing the intent of the Indigo DAO. While the Indigo DAO is not a legal
entity, the Foundation is, and therefore can enter into legal agreements with other real-world entities. The
Foundation is established to help implement approved actions of the DAO that cannot otherwise be implemented
in an automated or computational manner. The Foundation can engage with governmental authorities (for tax,
regulatory, or other purposes), contract with vendors, and educate the community about Indigo — all as directed
by the DAO.

The Foundation’s authority is limited to implementing the votes of the DAO and otherwise supporting
Indigo. The DAO may vote to amend the responsibilities of the Foundation at any time. The Foundation does
not have possession of or control of any Indigo or user funds. The DAO is required to fund the Foundation and
provide the Foundation with any tokens needed to make payments to third party vendors.

2.9.3 Governance Process

An owner of INDY who chooses to stake INDY within Indigo becomes a Member and obtains the right to vote
on proposals. A vote can be either in the form of yes, indicating favor of passing the proposal, or no, indicating
favor of rejecting the proposal. Each Member receives voting power weighted by their amount of INDY staked.

The Governance Process consists of three phases.

Step 1 — Temperature Check: A user creates and submits their idea to the Indigo Forum. The idea will
be reviewed by Moderators and Indigo Forum users for consistency with the Indigo DAO Constitution. Forum
users will review and provide comments or suggested improvements to the idea, and eventually vote on it within
the Forum.

Step 2 — Proposal: If a Temperature Check results in a positive outcome, a user needs to deposit INDY
to submit a proposal on-chain. In addition, the user submitting the proposal should also create voting shards

21

https://forum.indigoprotocol.io/

by depositing some ADA. Voting shards will maintain a record of votes and are meant to enhance on-chain
voting performance. Members can vote on the proposal using their staked INDY. Indigo’s Adaptive Quorum
Biasing mechanism automatically adjusts the threshold to determine how many positive votes are required for
the proposal to pass.

Step 3 — Execution: After a proposal’s Voting Period ends, it moves to the execution phase. If the
proposal passed, users could execute it and the proposal creator can retrieve their INDY deposit as well as their
ADA deposit within each voting shard.

To stop malicious users from spamming proposals on-chain and creating a headache for INDY DAO Members
to manage, an exponential INDY deposit is used when multiple proposals are taking place at the same time.
When a proposal is created the number of active proposals at that time is taken into account to calculate the
total required deposit of INDY:

d=p=*2?
Where:

e d is the required INDY deposit
e p is the proposal deposit determined by the protocol parameters

e ¢ is the number of active proposals at the time of proposal creation

If the proposal fails, the proposal is closed and the proposal creator loses their INDY deposit. The INDY is
instead sent to the Treasury.

2.9.4 Staking

Users who stake their INDY in Indigo’s governance (thereby becoming a “Member”) can vote on proposals. A
vote can be either in the form of yes, indicating favor of passing the proposal, or no, indicating favor of rejecting
the proposal. Each INDY staker receives voting power weighted by their amount of INDY staked and must
either use either all or none of their voting power.

When a Member votes on a proposal, their INDY stake is locked until that proposal’s Voting Period has
concluded (i.e., either approved, rejected, or expired). Locked INDY cannot be withdrawn from the protocol.
If a Member votes on multiple proposals, their INDY is unlocked after the most recently created proposal they
voted on concludes. If their INDY is in an unlocked state, then users can withdraw their INDY stake.

After casting a vote, it cannot be changed or undone. Voting power is set to the total amount of INDY
staked at the time of casting. If an Member deposits additional INDY into their position, they can use that
INDY in addition to the existing locked INDY to vote on another proposal but cannot use that additional
INDY to vote on a proposal they’ve already voted on. If the user deposits INDY after casting a vote and before
casting another vote, then the INDY can be withdrawn. After depositing INDY and casting a vote for another
proposal, all deposited INDY becomes locked and cannot be withdrawn until the end of the proposal.

2.9.5 Governance Rewards

Members who participate in Governance by casting a vote at least once every ninety days (configurable itself by
DAO vote) are rewarded with INDY each epoch. Each epoch, INDY is unlocked and distributed to all qualifying
Members. The amount of INDY each Member receives is based on the ratio of a Member’s stake relative to the
total amount of INDY staked, and can be calculated using:

a =

Where:

e ¢ is the amount of INDY a Member is rewarded
e b is the amount of INDY a Member has staked
e ¢ is the amount of INDY rewarded to all Members for the epoch

e m is the collection of INDY amounts staked by all Members

22

Table 4: Distribution schedule of INDY unlocked every epoch for
Governance rewards

INDY per Epoch
2,398

2.9.6 Adaptive Quorum Biasing

A proposal is considered passed when the ratio of yes votes over no votes exceeds the quorum threshold. Indigo
uses a dynamic vote-threshold mechanism called Adaptive Quorum Biasing (“AQB”) to calculate the quorum
threshold value. AQB lowers the quorum threshold as more INDY is used to vote. If voter participation is low,
then a high majority of those votes must be in favor of the proposal. If voter participation is high, then a lower
majority of those votes must be in favor of the proposal. Always at least 50% of votes must be in favor of a
proposal for it to pass.

In addition to AQB, the Indigo DAO has the ability to set a global parameter on the minimum amount of
INDY needed for a vote to pass as well. This mechanism is meant as a safety parameter and is not to restrict
the passing of proposals but to instead limit the ability of proposals to have little or no votes and creating a
passing proposal.

For example, if 29% of all circulating supply of INDY is used to vote during a proposal’s Voting Period, the
quorum threshold for that proposal would be set to 66%. This means that 66% or more of the total INDY used
for voting would be required to vote yes for the proposal to be considered passed. If more than 34% of the total
INDY used for voting voted no, then the proposal would fail.

100%

95%

90%

85%

80%

75%

Quorum Threshold

70%

65%

60%

55%

50%
1% 18% 29% 39% 49% 58% 67% 75% 83% 92% 100%
Voter Participation

Figure 13: Ilustration of quorum threshold decreasing as voter participation increases

23

To determine if a proposal is approved, the electorate (e) first needs to be calculated. e is INDY circulating
supply at the time of a proposal’s conclusion. INDY has a fixed distribution schedule, so e can be derived by
taking the launch time of the protocol, the end time of the proposal, and other values related to Indigo’s token
distribution schedule set at the time of protocol launch.

To calculate e the following logic can be used:

let z equal min {| 44| —a+1,73 b/}

let y equal {tb[;;f} J

Fr@d) = |)X (11 ifi-1< |eb- X, 73| %] e

Y otherwise

0 ifx <0
let = equal min{{%;lﬂ + 1,q}

0 ifz <0

let z equal
{MJ if 2 =0andd—1>0

q

{ %J otherwise

|a . @ a2
Zi=1f(aubz)+z+{0 ifd<1

Where:

a is a set of delays for token distribution schedules (set at protocol launch)

b is a set of vesting distribution schedules (set at protocol launch)

¢ is the amount of INDY unlocked upon Indigo mainnet launch (set at protocol launch)

d is the date of the proposal’s conclusion

[is the date of the first epoch after the launch of Indigo mainnet (set at protocol launch)

o is the offset for the start of Indigo’s team distribution (set at protocol launch)

p is the percentage of INDY total supply allocated to the Indigo team (set at protocol launch)

q is the total number of months the Indigo team distribution lasts for (set at protocol launch)

t is the total supply of INDY (set at protocol launch)

24

Vesting schedules defined by b are represented as a set of sets containing the percentage of token supply to
be distributed per year, with each value in the subset representing an individual year. For example, consider
the following set:

b = {{0.01,0.02,0.03} ,{0.05,0.1}}

This defines two vesting schedules (two being the size of the set b). The first vesting schedule in b, referenced
as by, describes a three-year vesting schedule (three being the size of the subset b1), with the first year distributing
1% (0.01 being 1%) of total token supply, the second 2%, and the third year 3%, for a total of 6% (0.06 being
the sum of all values in the subset b1) of tokens distributed over the three years.

Knowing e, a proposal’s approval status can be calculated using the formula:

_ Vy _ U"J
! Ve oy Fun
Where:

e ¢ is the vote threshold
e ¢ is the amount of INDY in circulation at time of the proposal’s conclusion
e v, is the number of yes votes

e v, is the number of no votes.

If ¢ is larger than 0, the proposal is passed. If ¢ is equal to or less than 0, the proposal is failed.

2.9.7 Governance Sharding

Upon creation of a proposal, multiple voting UTXOs can be created to maintain records of votes. Each voting
UTXO represents a shard. The total number of shards that can be created is defined by the Total Shards
protocol parameter.

After creating a proposal, the proposal’s creator can create shards, up to the number of Total Shards, by
depositing ADA and submitting transactions. If, after the proposal creation time plus the time defined by the
Proposing Period protocol parameter, there are fewer shards created than Total Shards, then the proposal is
considered expired.

The amount of ADA required to deposit to create an individual shard is x, as calculated and described in
the Minimum ADA to Create UTXO section. The proposal creator is required to deposit x ADA to create an
individual shard. To prevent a proposal from expiring before all votes can be submitted, the proposal creator
must deposit ADA totaling z multiplied by Total Shards. The deposited ADA is later returnable upon following
correct voting procedures, as described in the Governance Proposal Process section.

To vote, an INDY staker selects a shard to track their allocation. Each shard records the total number of
yes and no votes from users who voted using that shard. A shard can only record a vote from one user at a
time. If a shard is in use by another user, then the user must select an alternative shard to use. If all shards
are in use, then the user must wait until a shard becomes available.

At the end of the Voting Period, the shards can be closed. Upon closing, all votes from each shard can be
tallied, and the final vote counts can be used to calculate whether the proposal has passed.

25

All Shards
Shard 1 Shard 2 Shard 3
yes=43 yes=56 yes=85
no=27 no=7 no=29
A
Picks shard E
—> Picks random shard

Voter
A\ 4

Casts “yes” vote

v Shard 2
Records “yes” vote
Shard is updated =~ ----ee---sieaaaaoon > yes=57
no=7

Figure 14: A voter selecting and casting their vote using a shard

All Shards
Shard 1 Shard 2 Shard 3
yes=43 yes=57 yes=85
no=27 no=7 no=29
A

Votes are tallied after shards are merged

Y
Proposal Results

yes=185

no=63

Figure 15: Shards being merged to tally votes after a Voting Period has ended

26

2.9.8 Governance Proposal Types

Users can submit the following type of proposals:

Whitelist an iAsset — Propose that a new iAsset type be supported by the protocol. Attributes such
as the LR and Oracle price feed must be provided.

Update an iAsset — Propose that an existing iAsset’s LR and/or Oracle price feed be updated. Nullifying
an iAsset’s Oracle price feed causes that iAsset to be no longer mintable; therefore, it is delisted from the
protocol.

Text — Propose that the Indigo DAO should adopt a proposal described textually. This formally records
the DAQO’s intent on the blockchain but is not executed computationally, i.e., the proposal’s executable
message is non-actionable. A hash is stored on-chain, with the hash able to represent a Content Identifier
(CID)!'? that references data on an external storage network.

Upgrade Protocol — Propose that the protocol should be upgraded to a new version.

Update Protocol Parameters — Propose that parameters describing protocol behavior be updated.
Updateable parameters are shown in the Protocol Parameters table.

2.9.9 Protocol Parameters

Protocol parameters are updateable via proposals and define some behaviors of the protocol. They exist as
a map of values inside a UTXO. Users and protocol functions can reference the values of the latest defined
protocol parameters to utilize within transactions.

Table 5: Parameters that are able to be updated via an Update
Protocol Parameters Governance Proposal

Parameter Name

Description

Effective Delay The number of seconds after a passed proposal closes before it

becomes eligible for execution.

Expiration Period The maximum number of seconds allowed after a passed proposal

closes for it to be executed. If the proposal isn’t executed in time,
then the proposal is considered expired.

Proposal Deposit The amount of INDY that is required to be deposited to create a

proposal. If a proposal passes, the INDY deposit is returnable to the
owner. If a proposal fails, the INDY deposit is non-returnable, and
instead is only transferable to the DAO Treasury.

Proposing Period The maximum number of seconds allowed after a proposal is created

for its shards to be created. If shards are not created by this time
then the proposal fails and the creator loses their deposit.

Collateral Fee Percentage The percentage of ADA to take as a fee when withdrawing collateral

from CDPs or redeeming SPL rewards.

Total Shards The total number of Governance Shards to utilize during Voting
Periods of proposals.

Voting Period The number of seconds a proposal remains open for voting after being
created.

Minimum Quorum

The minimum number of INDY for a proposal to be able to be passed.

Max Treasury Lovelace Spend | The maximum amount of ADA (in lovelaces) allowed to be withdrawn

from the treasury.

Max Treasury INDY Spend The maximum amount of INDY (in INDYlaces) allowed to be

withdrawn from the treasury.

12A CID is a self-describing content-addressed identifier containing 32 characters. A CID can be used to lookup data stored on
decentralized networks such as Filecoin.

27

https://github.com/multiformats/cid
https://filecoin.tools/
https://filecoin.io/

2.9.10 Governance Proposal Process

Any user can create a proposal by depositing a fixed amount of INDY into the protocol. The amount of INDY
required is determined by the value of the INDY Deposit protocol parameter.

Once submitted, the proposal becomes eligible for the proposal creator to create shards. After one or more
shards are created for a proposal, it can be voted on by INDY stakers until that proposal’s Voting Period has
concluded.

Proposals are recorded on-chain with an executable message encoding the specific effects of each one. Upon
execution, the proposal will be processed with the full privileges of the governance contracts.

The following steps outline the proposal lifecycle:

1.
2.

A user creates a new proposal by depositing an amount of INDY that equals the Proposal Deposit.

The proposal creator creates one or more shards, up to a maximum of Total Shards, by depositing ADA.
All shards must be created before the Proposing Period ends for the proposal to pass.

The proposal enters the voting phase, where INDY stakers can vote (yes/no) using their staked INDY
positions. INDY of the INDY stakers who vote remains locked until the Voting Period ends.

. The Voting Period ends after more time has passed than the proposal’s creation time, plus time defined

by the Voting Period protocol parameter.
After the Voting Period has ended, the proposal can be closed by its creator.

If the proposal passes, its executable contents can be executed by users after a delay defined by the
Effective Delay protocol parameter. The proposal must be executed prior to the time described by the
Ezxpiration Period protocol parameter; otherwise, the proposal will be considered expired and no longer
executable.

Several actions can be taken against a proposal by users:

Create — Creates a proposal conforming to one of the allowed Governance Proposal Types.

Create Shard — The owner of the proposal is expected to — and can — create one or more shards, up
to a maximum of Total Shards. For a proposal to be eligible to pass, the number of shards created must
equal Total Shards. A shard is created by depositing ADA alongside a request to create one. Shards can
only be created from the creation of the proposal up until the Proposing Period ends. Creating shards
after the Proposing Period will cause the transaction to fail.

Merge Shards — Users can merge two or more shards created after the proposal’s Voting Period ends
and before the proposal is closed. Upon merging, the owner is eligible to receive back the ADA that was
deposited to create each merged shard after the proposal is closed.

Close — The owner of the proposal can close the proposal after its Voting Period ends if the number of
shards created is equal to Total Shards, and after all shards have been merged. If the number of shards
created is less than Total Shards, then the proposal cannot be closed until after the proposal expires.
After the owner closes their proposal, they receive back any ADA that was deposited to create each shard.
If a proposal expires before the owner closes the proposal, then any user can close the proposal.

Execute — If a proposal is closed and has passed, any user can execute it. Upon execution, the protocol
runs the executable message embedded within the proposal to apply changes to the protocol.

A proposal has the following states:

Created — After a proposal is created it is available for the owner to create shards.

Open — When a proposal has one or more shards available then it becomes available for INDY holders
to vote on. If a proposal has at least one shard but less than Total Shards, the proposal is Open.

Active — When a proposal has shards that equal Total Shards, all shards were created before the Proposing
Period, and time has not exceeded its Voting Period, then the proposal is Active.

Ended — When a proposal has exceeded its Voting Period, then the proposal is Ended.
Merged — When all the proposal’s shards have been merged, then the proposal is Merged.

Closed — When a proposal is Fnded, and after a user has made a submission for the proposal to close,
then the proposal is Closed.

28

e Passed — When a proposal is Closed and the number of yes votes exceeds the quorum threshold, then
the proposal is Passed.

e Failed — When a proposal is Closed and the number of yes votes does not exceed the quorum threshold,
then the proposal is Failed.

e Expired — When a proposal has exceeded its Ezrecution Period without being executed, if the created
shards are fewer than Total Shards after the Voting Period, or if shards have been created after the
Proposing Period, then the proposal is Ezpired.

e Executed — When a proposal is Passed and not Ezpired, then any user can execute the proposal. The
proposal then becomes Ezecuted.

2.9.11 Indigo DAO Treasury

The Indigo DAO owns and controls a DAO Treasury (the “Treasury”). Upon minting of INDY, a portion of
INDY (the amount is defined at protocol launch) is sent to the Treasury.

To permanently identify the Indigo DAO on the Cardano blockchain, a NFT is minted as the official Indigo
DAO identity token (“identity token”) and held in the Treasury. The identity token is transferred to wherever
the latest version of the Treasury lives. The protocol transfers the identity token and INDY in the Treasury
upon future protocol upgrades.

The primary purpose of the Treasury is to support the ongoing development and maintenance of the Indigo
Protocol. The assets are earmarked to be allocated to various essential activities (all subject to refinement and
revision by vote of the DAO):

1. Maintenance: A substantial portion of the Treasury’s funds are earmarked for maintaining and upgrading
the protocol’s infrastructure. On-going support of upgrades and maintenance of the existing Protocol is
essential to ensure a robust, secure, and efficient Protocol for users.

2. Development: Continuing the technical development and innovation of the Indigo Protocol is paramount
for its success and relevance. The Treasury has earmarked funds to pay developers and other technical
service providers in order to continuously fuel innovation and help ensure that the Protocol remains at
the forefront of technological advancement.

3. Foundation Operations: The Indigo Foundation is a Cayman Islands foundation company with limited
liability. It was created to be the voice of the DAO and oversee the Protocol’s governance and strategic
direction, as well as implement votes of the DAO (such as to hire developers to provide maintenance
or development services, or vendors to provide audits, accounting, legal or other services). To fulfill
its mission, the Foundation requires substantial resources on an annual basis to cover normal business
expenses. A portion of the Treasury is earmarked to provide the necessary financial support for these
operations.

There is a limit of INDY and ADA that can be withdrawn from the Treasury. This limit can be adjusted
by a DAO vote to adjust protocol parameters.

2.9.12 Protocol Upgrade

Indigo is designed to be continually and incrementally upgraded. Instead of releasing distinct protocols that
users may interact with individually, the Indigo Protocol exists as a singular protocol whose underlying validators
may periodically be updated. From a user’s perspective, the interaction is seamless, since they will only interact
with one protocol, regardless of the version of Indigo Protocol that is live on the Cardano blockchain.

A single protocol has been launched, and new features will be added to Indigo via approval from Members.
Protocol upgrades are driven by the governance process. To suggest new features, a Text proposal and
development request must first be approved and authorized by the DAO. A development firm such as Indigo
Laboratories will then begin work on building software to implement the new features.

When software is ready for deployment, a request to upgrade is submitted to Indigo. Members can inspect
the new code requested to be deployed and either approve or reject the proposal. Upon approval, the developing
entity of the software can deploy the code to Cardano, and Indigo will be automatically upgraded to a new
version. However, the code must match the code approved by Members, otherwise Indigo will not recognize the
new features as authentic, and no upgrade will take place.

After deployment and approval, individual user positions can be migrated from the old version to the new
one. Some features may not be available until the user has migrated their positions. For example, if a user owns
a CDP, they will be unable to add collateral to their CDP until they migrate their CDP to the new version of

29

Proposal Owner subits a Proposal

(deposits INDY)
g g P
Sconaro?
Polshards reated n tme
e Proposal owner creates all ol shards
within Proposed Period
(deposits ADA)
Uses vots onthe proposal
(at least 1 Poll shard must be created)
i ooy
Scenaro11
e P T
Proposal Owneror any user marges al ol Proposal Overor any user fals tomerge all
hards withn Efective Delay perod Polshards withn Efectve Dely period
Proposal Owneror any user ends proposal
Compute vaingresut
Proposaipassed?
Yes No
s Proposal Owner e Proposal Owner
P P Proposal s expired
gets ADA deposit back gets ADA depastback

Proposal Owner
gets INDY deposit back

INDY deposit
is sent to Treasury

Proposal Owner or any user merges shards.
Proposal Owner or any user

execute the proposal

Proposalis executed
within execution
period?

Proposal Owner or any user ends proposal

Proposal s expired

cenario 2
Poll shards not created in time.

Proposal Owner fails to create any or
all Poll shards within Proposed Period
(deposits ADA)

Users vote on the proposal

Proposal s expired

Proposal Owner or any user merges shards.
(if any were created)

Proposal Owner or any user ends proposal

User merging shards
gets ADA deposit

INDY deposit
is sent to Treasury

User merging shards
gets ADA deposit

INDY deposit
is sent to Treasury

Figure 16: Hlustration of the proposal lifecycle

30

Indigo. To migrate a CDP, a user will have to pay a small transaction fee in the form of ADA and submit the
migration request via the Indigo Web App. If a user chooses not to migrate a CDP, they will not be able to
deposit more collateral or mint more iAsset; their CDP may become at risk of liquidation. Another user may
opt to migrate a CDP subject to liquidation to perform the liquidation and confiscate the underlying collateral,
with the original CDP owner losing their collateral.

Upgrade Protocol
Proposal

Proposal passes

\

Upgrade Process

Upgrade Path

Contains CDP=khc1v7niwf

SP=nxoll7fch2

Collector=40gxpehemc

User executes proposal

\

Protocol mints Version Record Token

............................... >

Version Record Token

Version=1

Version Record Token

Version=2

CDP=khc1v7niwf

SP=nxoll7fch2

Collector=40qgxpehemc

=

Contains

Version Registry

Contains

Figure 17: Illustration of an Upgrade Protocol proposal upgrading the CDP, SP, and Collector contracts

31

Version Registry

Contains
\
References :
————» Calls Upgrade Version +----------------- >/ Version Record
Token
. Belongsto - :
Wants to migrate :
Voo v :
Validates Authorization 1
Belongs to h
Old Validator ~ <<----------=-------4 UTXo ;
S Points to :
T‘\\ Migrates 1
) 4
Migrates UTXO
Creates 1
v v
Belongs to i
UTXO r---memmmomooooee > New Validator

Figure 18: Illustration of a UTXO migrating from an old validator to a new validator

32

Proposal Preparation

Proposal Owner writes code for new
validator scripts and corresponding minting
policies

Proposal Owner creates an upgrade path
and submit it as part of an Upgrade Protocol
proposal

Voting

Initialization

Proposal Owner ends the proposal
(Upgrade Token is minted, containing
upgrade path)

Any user executes Upgrade Protocol
proposal

VersionRecord token is minted
& sent to Version Registry script Upgrade Token is burnt
(contains upgrade path)

Protocol version increased by 1
(via updating datum of Governance UTXO)

Initialisation phase ends
Upgrade is now dependent on users' interaction with the protocol

Upgrade

User submits a transaction to upgrade a
given UTXO locked at a given validator script

Minting policy hash is looked up from
Upgrade Path by using validator script name

Upgrade instructions are read from minting
policy

UTXO locked at old validator script is

1 CurrencySymbol token is minted
consumed

New UTXO s created and locked at new
validator script

Figure 19: The process to upgrade the protocol

33

Collector
UTXO 1 UTXO 2 UTXO 3
Balance=0 Balance=0 Balance=0
A
Picks UTXO |

Does action requiring 50 ADA fee

""""""" Y
Deducts fee] Stores fee UTXO 2
Paysfee @ @ [------------eoe-3

Balance=50

Figure 20: A user paying a fee to the Collector

2.10 Protocol Profit Sharing

As users create and close CDPs, and as CDPs are liquidated, a fee is collected. Members are rewarded by
receiving a share of the collected fees. The Debt minting fee and Liquidation Fee are parameters assigned to
iAssets that are modifiable by DAO vote.

Debt Minting Fee:

a=bxc
e ¢ is the ADA fee charged for minting debt
e b is the current Debt minting fee constant
e ¢ is the amount of iAsset minted
Liquidation Fee:
a=bxc

e ¢ is the Liquidation fee upon liquidation
e b is the current Liquidation fee constant

e ¢ is the amount of iAsset liquidated

When a fee is collected, it is sent to the Collector smart contract. The Collector’s purpose is to collect protocol
fees and distribute them to INDY stakers. Users who stake their INDY are eligible to a share of all collected
protocol fees, proportional to their share of total INDY staked.

The Collector maintains a collection of UTXOs that can be used to store ADA. When a protocol fee is
collected, such as during withdrawal of a liquidation reward, the user selects a UTXO from the Collector to
send the fee to. The amount of ADA required to deposit to create a Collector UTXO is z, as calculated and
described in the Minimum ADA to Create UTXO section. A Collector UTXO can be created by any user who
deposits x ADA. Once deposited, a new UTXO is added to the Collector and the ADA cannot be withdrawn.

Users can request to gather fees from Collector UTXOs and collectively send them to the Staking Manager
who is responsible for allowing INDY stakers to withdraw their share of owed fees, and will only accept deposits
of fees if there are one or more INDY stakers. If no INDY is staked, then user requests to transfer fees from the
Collector to the Staking Manager will fail.

34

Collector
UTXO 1 UTXO 2 UTXO 3
Balance=0 Balance=50 Balance=70
Y
Collect fees
\ 4
Staking Manager Withdraw balance UTXO 2
Balance=120 L. Balance=0

Withdraw balance ~ TN uTx0 3

Balance=0

Figure 21: Transferring collected fees to the Staking Manager

The Staking Manager keeps track of the number of INDY that are staked as well as a snapshot value. The
snapshot value is a running total (with a precision of six decimals) of reward deposits updated each time ADA
is transferred from the Collector to the Staking Manager, and can be calculated using:

¢
a=>b+ p
Where:
e a is the new snapshot value to be stored by the Staking Manager, truncated to six decimals
e b is the current snapshot value stored by the Staking Manager
e ¢ is the amount of ADA deposited into the Staking Manager from the Collector

e d is the total amount of INDY staked in the Staking Manager

The snapshot value is initially set to zero. When a user stakes INDY, the current snapshot value is stored in
the INDY staker’s position, and the total amount of INDY staked is updated in the Staking Manager. When an

INDY staker updates or closes their position, all rewards are withdrawn. INDY staker rewards can be calculated
using:

a=d(b-c)
Where:
e ¢ is the amount of ADA reward the user is owed
e b is the current snapshot value stored by the Staking Manager
e ¢ is the snapshot value when the user staked their INDY

e d is the amount of INDY the user has staked

3 Smart Contract Design

In Cardano’s eUTXO model'?, each transaction has inputs and outputs. An input is a UTXO that is an output
of another transaction. Users interact with the protocol by performing actions and submitting transactions
containing those actions to Protocol Endpoints. Submitted transactions are validated by the protocol’s smart
contracts (also known as validators). If a transaction is successfully validated (i.e., permitted), then an action
is put into effect by the transaction’s execution.

13Cardano utilizes the eUTXO model to perform arbitrary logic permitted by smart contracts.

35

https://docs.cardano.org/learn/eutxo-explainer

) Input Transaction ‘ Minted Token

@ Reference Input “ Burned Token
-

@ Continuing Output Consumed Tx Input
@ New Output Reference Tx Input

Figure 22: Legend for Protocol Endpoint transaction examples

Protocol Endpoints allow users to interact with the protocol by performing a specific action such as opening
a CDP, submitting a proposal, depositing iAssets in a SP, etc. A Protocol Endpoint can take input in the form
of UTXOs. Input is provided either by consuming or referencing. To consume a UTXO is to spend the UTXO
in whole within the transaction. By consuming the UTXO it allows change to the state of that UTXO, such as
updating the balance. To reference a UTXO is to read the UTXO without change. Only one user can consume
a single UTXO at a time, whereas many users can simultaneously reference UTXOs.

Protocol Endpoints may perform actions in the form of minting or burning. Minting a token creates a new
token and allows it to be used as input. Upon minting, the token may be stored in a UTXO containing datum
that can be read for additional information. Burning a token destroys an existing token, making it no longer
usable as input.

Outputs are UTXOs that are created as an effect of a transaction. For example, a Protocol Endpoint may
create an output to represent a user position or a pool of tokens. After an output is created it can be used as
an input.

Following are details for each Indigo smart contract, their tokens issued, parameter inputs, and outputs.

For the described smart contract parameters, token types are in the form of Value.AssetClass'. The
smart contracts look for the UTXO with the token type and may read the datum of that UTXO for additional
information.

3.1 CDP

The CDP contracts are used to store the collateral used to mint iAssets. There are two contracts for managing
CDPs: CDPCreator and CDP. The CDPCreator validates the creation of a user’s CDP UTXO. The CDP
contract is used to manage a user’s individual position by validating actions such as storing collateral, minting
iAssets, and performing SPL.

Table 6: CDP native tokens

Name ‘ Description ‘ Minting Policy
CDPCreatorNFT Identifies the authentic The protocol mints more than 1
CDPCreator output token at initialization
Validators ensure that this NFT
always stays at the CDPCreator
output
CDPToken Identifies an authentic CDP output | The transaction must spend
CDPCreatorNFT or consume a
CDPToken
iAssetToken Identifies an authentic iAsset The transaction must consume
output, where datum is stored GovNFT
defining iAsset information
including the OracleAssetNFT
used to reference the latest price
Validators ensure that this token
always stays at an iAsset output

14 An asset class is identified by currency symbol and token name.

36

https://playground.plutus.iohkdev.io/doc/haddock/plutus-ledger-api/html/Plutus-V1-Ledger-Value.html#g:3

Table 6: CDP native tokens

Name ‘ Description

‘ Minting Policy

iAssets (iBTC, iETH, etc.) | Synthetic version of BTC, ETH,

etc.

The transaction must consume a

CDPToken

Table 7: CDP reference inputs

Type ‘ Description

Datum

OracleAssetNFT | The NFT managed by an Oracle
provider that’s used to record price
information for an iAsset

price: The price with six decimals of
precision
expiration: The timestamp in which the

oracle price expires

3.1.1 CDPCreator Parameters

e cdpCreatorNFT :: CDPCreatorNFT. NFT for identifying authentic CDPCreator output.

e cdpAssetCs :: CurrencySymbol. Currency symbol for the minting policy of iAssets.
p yoy! y sy g policy

e cdpAuthTk :: CDPToken. Token for identifying authentic CDP output.

e iAssetAuthTk :: iAssetToken. Token for identifying authentic iAsset output including datum with the
iAsset name, LR, and OracleAssetNFT reference to find the latest price for the asset.

e versionRecordToken :: VersionRecordToken. Token for identifying the version record for a protocol

upgrade.
e cdpScriptHash :: ValidatorHash. Hash of CDP script, used for verifying the output of a CDP.
e minCollectoralInLovelace :: Integer. The minimum allowed lovelaces in a CDP.

e biasTime :: PosixTime. The range of time that a transaction is valid onchain.

3.1.2 CDP Parameters

e cdpAuthToken :: CDPToken. Token for identifying authentic CDP output.
e cdpAssetSymbol :: CurrencySymbol. Currency symbol for the minting policy of iAssets.
e iAssetAuthToken :: iAssetToken. Token for identifying authentic iAsset output.
e stabilityPoolAuthToken :: StabilityPoolToken. Token identifying authentic SP output.

e versionRecordToken :: VersionRecordToken. Token for identifying the version record for a protocol

upgrade.
e upgradeToken :: UpgradeToken. Token for identifying proposal Upgrade tokens to update iAsset output.
e collectorValHash :: ValidatorHash. The validator hash for the Collector contract.
e govNFT :: GovNFT. NFT for identifying authentic governance parameters.
e spValHash :: ValidatorHash. The validator hash for the SP contract.
e minCollateralInLovelace :: Integer. The minimum allowed lovelaces in a CDP.
e partialRedemptionExtraFeelovelace :: Integer. The fee for processing a partial redemption.
e biasTime :: PosixTime. The range of time that a transaction is valid onchain.

e treasuryValHash :: ValidatorHash. The validator hash for the Treasury contract.

37

Table 8: CDP outputs

Type

Description

‘ Datum

‘ Values

CDPCreator

Many CDPCreator outputs
exist for the protocol

To create a CDP output,
this output must be
consumed

CDPCreatorNFT: 1

CDP

Each CDP output
represents an individual
position

owner: The public key hash
that owns this CDP

asset: The type of iAsset
associated with this CDP
minted_amount: Amount of
iAsset minted from this
position

accumulated_fees: Total
amount of fees collected
from interest and
Liquidation Processing Fee

CDPToken: 1
ADA: collateral locked in
this position

38

Table 8: CDP outputs

Type ‘ Description ‘ Datum ‘ Values
iAsset Each iAsset output name: the name of iAsset 1AssetToken: 1
represents an iAsset price_info: Either the final

price for the delisted asset
or the OracleAssetNFT
used to reference the price
feed

redemption_ratio: The ratio
at which a CDP can be
redeemed.
maintenance_ratio: The
minimum that the user can
set their CDP collateral
ratio to.

liquidation_ratio: If a CDP
goes below this ratio, it is
susceptible to liquidations.
debt_minting_fee_percentage:
The percentage of fee to
take in lovelaces when
minting iAsset
liquidation_processing_fee_perdentage:
The percentage of fee to
take in lovelaces when
liquidating an iAsset
redemption_reimbursement_peyjcentage:
This fee is charged to the
redeemer’s redemption
value. This percentage of
ADA is returned to the
redeemed CDPs collateral.
redemption_indy_staker_percentage:
This fee is charged to the
redeemer’s redemption
value. This percentage of
ADA is sent to INDY
stakers.

base_rates: Interest rates in
an ordered list, from newest
to oldest.

first_iasset: Marks if this
asset is the first iAsset.
next_iasset: An optional
field if there is an iAsset
after this one in
alphabetical order.

3.1.3 CDP Endpoints
CDP: Open Creates a CDP associated with an iAsset type

Type ‘ Amount ‘ Description

Redeemer | N.A. CreateCDP, takes as parameters a public key hash corresponding to a user’s
wallet, amount of iAssets to mint, and ADA collateral to deposit

Redeemer | N.A. Collect, collects value from the Collector UTxO to distribute the debt minting
fee.

39

Type Amount | Description

Consume | 1 | CDPCreator UTXO

Consume ‘ 1 ‘ Collector UTXO

Consume ‘ 1+ ‘ ADA to be used as collateral

Reference | 1 | iAsset UTXO that identifies the iAsset to mint

Reference ‘ 1 ‘ UTXO containing the OracleAssetNFT with a datum describing the iAsset price

Mint 0 The minted iAsset tokens (dependent on the ADA deposited, iAsset LR
determined from the iAsset UTXO, and iAsset price)

Mint |1 | CDPToken that identifies a user’s position

Output ‘ 1 ‘ CDPCreator UTXO

Output ‘ 1 ‘ CDP UTXO that represents a user’s CDP

Output | 1 | Collector UTXO that collects the debt minting fee

Output ‘ 1 ‘ The UTXO sent to the user’s wallet containing the minted iAsset

7

—5) CDPCreator UTXO

(=> cppcreator UTxO

Address Address

CDPCreator Script
Value

CDPCreator Script ‘
> Value

CDPCreatorNFT: 1
ADA: 2.000000

CreateCDP

CDPCreatorNFT: 1
ADA: 2.000000

6) User Wallet UTxO
Address

(> coputxo

Address
\\/ CDP Script
Datum

owner: PubKeyHash

asset:

minted_amount: Integer
accumulated_fees: AccumulatedFees

User Wallet

Value

ADA: 1000.000000

- iAsset UTxO /7
/

Address Z

Transaction
CDP Open Position

Value
CDPToken: 1

‘CDP Script ‘ ADA: 500.000000
Datum P f CDP Validator
I
iaPrice: Integer/AssetClass / {‘ CDP Script Address
Value / User Wallet
> Value

iAssetToken: 1 /
ADA: 2.000000

ADA: 500.000000
iAsset: 100.000000

@ Oracle UTxO /
Address /

@ Collector UTxO
Address

Oracle Address

Datum //
odPrice: Integer - ‘Colleclor Script ‘
odExpiration: Timestamp Value

Value «—— Debt Minting Fee

ADA: 115.000000
OracleAssetNFT: 1 J

ADA: 2.000000

@ Collector UTxO
Address

Collector Script

Value

ADA: 100.000000

Figure 23: Example of creating a CDP with 500 ADA and minting 100 iAsset

CDP: Deposit Collateral Deposit ADA collateral into an existing CDP

40

Type ‘ Amount
Redeemer ‘ N.A.

Description

AdjustCDP, CDP Input

Consume ‘ 1 CDP UTXO that represents the user’s current position

Consume \ 1+ UTXOs containing ADA from the user’s wallet to be used as collateral

|
|
|
|
Reference ‘ 1 ‘ iAsset UTXO that serves to identify the iAsset that the CDP is for
|
|

Output ‘ 1 CDP UTXO that represents the user’s adjusted CDP
Output |1 New UTXO to the user wallet returning change (if any)
5) copuTxo
Address
CDP Script
S (> coputxo
owner: PubKeyHash Address
et o et |co seript
accumulated_fees: AccumulatedFees Datum

Value

CDPToken: 1
ADA: 500.000000

owner: PubKeyHash

asset: TokenName

minted_amount: Integer
_fees: Accumt

Transaction
CDP Deposit Collateral

Value

@ User Wallet UTxO
Address

CDPToken: 1
ADA: 1000.000000

User Wallet — /
/
Value / (=> User Wallet UTxO
ADA: 1000.000000 / Add
/ CDP Validator ress
User Wallet

/ Address
@ iAsset UTxO /

Address /

Value

ADA: 500.000000

CDP Script /|
Datum i

iaName: TokenName e
iaMinRatio: Integer b=~
iaPrice: Integer/AssetClass

Value

iAssetToken: 1
ADA: 2.000000

Figure 24: Example of depositing an additional 500 ADA into an existing CDP

CDP: Withdraw Collateral Withdraw ADA collateral from an existing CDP

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ AdjustCDP, CDP Input

Redeemer | N.A. | Collect, Collector Input

Consume ‘ 1 ‘ CDP UTXO that represents the user’s current position

Consume ‘ 1 ‘ Collector UTXO that may already contain fees previously collected

Reference | 1 | iAsset UTXO that serves to identify the iAsset should be minted

Reference ‘ 1 ‘ UTXO containing the OracleAssetNFT with a datum describing the iAsset price

Output ‘ 1 ‘ CDP UTXO that represents the user’s adjusted position

Output 1 Collector UTXO that contains a portion of the withdrawn collateral (taken as
the collector fee)

Output ‘ 1 ‘ A new UTXO to the user wallet containing the withdrawn collateral

CDP: Close Closes an existing CDP

41

CDP UTxO

Address
CDP Script
Datum
owner: PubKeyHash
asset: TokenName

minted_amount: Integer
accumulated_fees: AccumulatedFees

Value

CDPToken: 1
ADA: 1000.000000

AdjustCDP

iAsset UTxO
Address

‘ CDP Script

Datum

iaName: TokenName
iaMinRatio: Integer _
iaPrice: Integer/AssetClass | T TTo=- _

Value -

iAssetToken: 1 /
ADA: 2.000000 4

Oracle UTxO /
Address ,/

CDP Withdraw Collateral

Transaction

@ CDP UTxO
Address
‘CDP Script
Datum

owner: PubKeyHash
»|asset: TokenName
minted_amount: Integer
fees: Accumt

Value

CDPToken: 1
ADA: 500.000000

C%) User Wallet UTxO
Address
‘ User Wallet

CDP Validator

‘Oracle Address /
Datum ,

odPrice: Integer e
odExpiration: Timestamp

Value

OracleAssetNFT: 1
ADA: 2.000000

<«—— Collateral Fee

Ve

Collector UTxO
Address

Collector Script
Value
ADA: 100.000000

Value

ADA: 975.000000
iAsset: 100

@ Collector UTxO
Address
J Collector Script

Value

ADA: 115.000000

Figure 25: Example of withdrawing 500 ADA from a CDP and paying a 10 ADA fee

42

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ CloseCDP

Redeemer | N.A. | Collect

Consume | 1 | CDP UTXO that represents the user’s current position

Consume ‘ 1 ‘ Collector UTXO that may already contain fees previously collected

Consume | 1+ UTXOs from the user’s wallet containing iAsset tokens of the same type as the
CDP

Reference ‘ 1 ‘ iAsset UTXO that serves to identify the iAsset the CDP is for

Reference ‘ 1 ‘ UTXO containing the OracleAssetNFT with a datum describing the iAsset price

Burn | o0 | iAssets that were sent by the user

Burn ‘ 1 ‘ CDPtoken

Output 1 Collector UTXO that contains a portion of the CDP collateral (taken as the
collateral fee)

Output ‘ 1 ‘ A new UTXO to the user wallet containing the total collateral (minus the fee)

%) copuTxo

Address
‘CDP Script
Datum
owner: PubKeyHash

asset: TokenName
minted_amount: Integer

accumulated_fees: AccumulatedFees

Value

CDPToken: 1
ADA: 500.000000

R

—5) User Wallet UTxO
Address
‘User Wallet
Value

ADA: 1000.000000
iAsset: 100.000000

@ iAsset UTxO
Address
‘CDP Script
Datum

iaName: TokenName
iaMinRatio: Integer
iaPrice: Integer/AssetClass

Value

iAssetToken: 1
ADA: 2.000000

Oracle UTxO
Address

5,

‘Oracle Address
Datum

odPrice: Integer
odExpiration: Timestamp

Value

OracleAssetNFT: 1
ADA: 2.000000

%’:‘)

3

Address
‘ Collector Script
Value

{ADA: 100.000000

Collector UTxO

CDP: Mint iAsset

@ User Wallet UTxO
Address
User Wallet ‘

[“ iAsset [“ CDP Token

Value

ADA: 1475.000000 ‘

Transaction
CDP Close Position

@ Collector UTxO
Address

Collector Script ‘

Value

ADA: 115.000000 ‘

«—— Collateral Fee

Figure 26: Example of closing a CDP and paying a 10 ADA fee

Mints iAsset using an existing CDP

43

Type ‘ Amount ‘ Description
Redeemer ‘ N.A. ‘ AdjustCDP, CDP Input
Redeemer | N.A. | Collect, Collector Input
Consume | 1 | CDP UTXO that represents the user’s current position
Consume ‘ 1 ‘ Collector UTXO that may already contain fees previously collected
Reference ‘ 1 ‘ iAsset UTXO that serves to identify the iAsset the CDP is for
Reference | 1 | UTXO containing the OracleAssetNFT with a datum describing the iAsset price
Mint ‘ 00 ‘ iAsset tokens the user selected to mint
Output ‘ 1 ‘ CDP UTXO that represents the user’s adjusted CDP
Output ‘ 1 ‘ Collector UTXO that contains the debt minting fee
Output ‘ 1 ‘ A new UTXO to the user wallet containing the newly minted iAsset tokens
CDP UTxO
Address
‘CDP Script
Datum

owner: PubKeyHash

asset: TokenName

minted_amount: Integer
fees: umt

AdjustCDP

Value
{CDPToken: 1

ADA: 500.000000

iAsset UTxO

Address
‘CDP Script

Datum .
Transaction

””””””””””””””””” CDP Mint iAsset

iaName: TokenName
iaMinRatio: Integer .
iaPrice: Integer/AssetClass g

,

Value /

iAssetToken: 1 /
ADA: 2.000000
: CDP Validator

Address

—()) Oracle UTxO ,
Address %

‘Oracle Address L/

Datum -

odPrice: Integer
odExpiration: Timestamp

Value -<—— Debt Minting Fee

OracleAssetNFT: 1
ADA: 2.000000

@ Collector UTXO
Address

‘Collector Script
Value
{ADA: 100.000000

Figure 27: Example of using a CDP to mint 100 iAsset

CDP: Burn iAsset Burns iAsset using an existing CDP

—> CDPUTxO

Address
‘CDP Script

Datum
owner: PubKeyHash
asset: TokenName

minted_amount: Integer
|_fees: AccumulatedFe

Value

CDPToken: 1
ADA: 500.000000

@ User Wallet UTXO

Address

‘ User Wallet
Value

ADA: 1000.000000
iAsset: 100

% Collector UTxO
Address
‘ Collector Script

Value

ADA: 115.000000

Type ‘ Amount ‘ Description

Redeemer | N.A. | AdjustCDP

44

Type

‘ Amount ‘

Description

Consume ‘ 1

CDP UTXO that represents the user’s current position

Consume ‘ 1+

UTXOs from the user’s wallet containing the iAsset tokens to be burned

Reference ‘ 1

iAsset UTXO that serves to identify the iAsset that the CDP is for

Burn ‘ o0 The iAsset tokens the user requested to burn
Output ‘ 1 CDP UTXO that represents the user’s adjusted position
Output ‘ 1 New UTXO to the user wallet returning change (if any)

CDP: Freeze Makes an existing CDP no longer interactable by its creator if it is insolvent

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ FreezeCDP

Consume ‘ 1 ‘ CDP UTXO that represents the user’s current position

Reference ‘ 1 ‘ iAsset UTXO that serves to identify the iAsset the CDP is for

Reference | 1 | UTXO containing the OracleAssetNFT with a datum describing the iAsset price
Output ‘ 1 ‘ CDP UTXO that represents the frozen CDP

Output ‘ 1 ‘ New UTXO to the user wallet returning change (if any)

CDP: Liquidate Withdraws ADA collateral from a CDP and transfers it to a SP if the CDP is frozen

Processing Fee and Collateral Fee

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ Liquidate, CDP Input

Redeemer ‘ N.A. ‘ LiquidateCDP, Stability Pool Input

Redeemer ‘ N.A. ‘ CollectADA, Treasury Input

Redeemer ‘ N.A. ‘ Collect, Collector Input

Reference ‘ 1 ‘ iAsset UTXO that serves to identify the iAsset the CDP is for
Consume | 1 | CDP UTXO that represents the frozen CDP to liquidate

Consume ‘ 1 ‘ SP UTXO that contains iAsset tokens to repay the debt

Consume ‘ 1 ‘ Treasury UTXO that contains existing lovelaces

Consume | 1 | Collector UTXO that contains existing lovelaces

Burn ‘ 0/1 ‘ If all debt is repaid, then the CDPToken of the frozen CDP is burned
Output ‘ 1 ‘ SP UTXO that with the added collateral from the frozen CDP
Output | 1 | Treasury UTXO that has the included ADA for CDP interest
Output 1 Collector UTXO that has the included ADA for INDY Stakers Liquidation

CDP: Merge Closes one or more CDPs and transfers all CDP state into a single CDP

Type

| Amount | Description

Redeemer ‘ N.A.

MergeCDPs

Redeemer

N.A.

MergeAuxiliary, takes a CDP UTXO as a parameter which identifies the main
UTXO to keep and have others UTXOs merged into

45

Type ‘ Amount ‘

Description

Consume ‘ 24 ‘

CDP UTXOs of the frozen CDPs to merge

Output ‘ 1 ‘

CDP UTXO representing all the frozen CDPs combined

CDP: Redemption Allows a user to spend some iAsset to redeem for a CDPs collateral by repaying their

debt

Type ‘ Amount

Description

Redeemer ‘ N.A.

RedeemCDP, CDP Input

Redeemer ‘ N.A.

Collect, Collector Input

Reference ‘ 1

iAsset UTXO that serves to identify the iAsset the CDP is for

Consume ‘ 1

CDP UTXO to redeem

|
|
|
|
|
! |
|
|
|

Consume ‘ Collector UTXO that contains existing lovelaces
Consume | 1+ UTXOs from the user’s wallet containing the iAsset tokens to be redeemed
against
Output ‘ 1 CDP UTXO that has been redeemed against
Output ‘ 1 UTXO to the user wallet returning the redeemed ADA
Output ‘ 1 Collector UTXO that has the included ADA for Redemption INDY Staker fee

3.2 Stability Pool

The SP contract is used as a pool of iAssets to be used for liquidation. It is important to understand how the
Snapshot works to understand how the liquidations and account withdrawals work. The Stability Pool utilizes
a pattern called Liquidity State Transitions to allow a user to create a request transaction that can then be
used in an execution transaction to process the appropriate action.

Table 19: Stability Pool native tokens

Name ‘ Description ‘ Minting Policy

StabilityPoolToken Identify the authentic StabilityPool | The transaction must spend
output GovNFT

AccountToken Identify an authentic The transaction must spend
StabilityPoolAccount output StabilityPoolToken

EpochToScaleToSumToken | Identify an authentic The transaction must spend
SnapshotEpochToScaleToSum StabilityPool Token
output

RequestToken Identify an authentic The Request Policy rules must be
StabilityPoolRequest output satisfied, see Request Policy smart

contract rules

3.2.1 Stability Pool Parameters

e assetSymbol :: CurrencySymbol. The minting policy for iAssets.

e stabilityPoolToken ::

StabilityPoolToken. The token identifying an authentic SP output.

e accountToken :: AccountToken. The token identifying an authentic SP Account output.

e snapshotEpoch2Scale2SumToken :: EpochToScaleToSumToken. The token identifying an authentic SP

Account output.

e requestToken :: RequestToken. The token identifying an authentic Stability Pool Request output.

46

CDP UTxO

Address
. — CDP UTxO
‘CDP Script C
Address
Datum
owner: PubKeyHash AdjustCDP ‘CDP Script
asset: TokenName Datum
minted_amount: Integer
fees: owner: PubKeyHash
asset: TokenName
Value minted_amount: Integer
{CDPToken: 1 _fees: A
ADA: 500.000000 Value
— CDPToken: 1
\%\J} User Wallet UTxO

Transaction ADA: 2.000000

Address CDP Burn iAsset
User Wallet
‘ @ User Wallet UTxO
Value
Address
ADA: 1000.000000
iAsset: 100.000000 User Wallet
CDP Validator > Value
/
p / Address ADA: 1000.000000
. , ; .
5) iAsset UTxO y { CDP Script iAsset: 50.000000
Address /
/
‘CDP Script ‘ /
Datum //
iaName: TokenName 7

iaMinRatio: Integer ="
iaPrice: Integer/AssetClass

Value

ADA: 2.000000

iAssetToken: 1 ‘

Figure 28: Example of using a CDP to burn 50 iAsset

-5) cDPUTxO
Address
‘CDP Script
Datum
owner: PubKeyHash
asset: TokenName

minted_amount: Integer
accumulated_fees: AccumulatedFees

FreezeCDP
Value

CDPToken: 1
ADA: 500.000000

CDP UTxO
—@ iAsset UTxO Address
Address ‘CDP Script
‘CDP Script ‘ Datum
Datum

owner: PubKeyHash
asset: TokenName

Transaction
CDP Freeze

iaName: TokenName

_ minted_amount: Integer
iaMinRatio: Integer s |_fees: Accumt ee
iaPrice: Integer/AssetClass // VEE
/
Value CDPToken: 1
iAssetToken: 1 / ADA: 2.000000
. / -
ADA: 2.000000 / © CDP Validator
’
// Address
/ .
Oracle UTxO // « CDP Script
Address //
’
‘Oracle Address 7
-
Datum -~

odPrice: Integer
odExpiration: Timestamp

Value

OracleAssetNFT: 1
ADA: 2.000000

Figure 29: Example of freezing a CDP, thereby removing the creator as an owner

47

CDP UTxO

Address
CDP Script
Datum
owner: PubKeyHash »
asset: TokenName C—) Stability Pool UTxO
minted_amount: Integer
Address

accumulated_fees: AccumulatedFees
‘Stability Pool Script

Value
CDPToken: 1 S Datum
ADA: 500.000000 Liquidate .
iasset: TokenName
- snapshot: StabilityPoolSnapshot
Sean YIROoUTXO) epoch2scale2sum: epoch2scale2sum
Address Value

StabilityPoolToken: 1
ADA: 980.000000
iBTC: 100.000000

Stability Pool Script
B @9 CcoP Token

iasset: TokenName
snapshot: StabilityPoolSnapshot
epoch2scale2sum: epoch2scale2sum

@ Treasury UTxO
Address

Value i
S Transaction

StabilityPoolToken: 1 (UETEEEER CDP Liquidate ‘Treasury Script

ADA: 500.000000 A Datum

iBTC: 50.000000 .
CollectADA ‘V°“’
Value
—5) Treasury UTxO {ADA: 3010
Address o—a
Liquidation
‘Treasuw Script Processing Fee & (3_) Collector UTxO
Dat Collateral Fee
atum Address
‘Void CDP Interest Fee Collector Script ‘
Value Value
{ADA: 3000
ADA: 110.000000
Aﬁ\, Collector UTxO
Address
‘Collector Script @ CDP Validator @ stability Pool Validator
Value Address Address
{ADA: 100.000000 |- cOP Seript | - stabity Pool Script

@ Treasury Validator @ Collector Validator
Address

Address

{- Treasury Script {- Collector Script

Figure 30: Example of a CDP with a debt of 50 iAsset and collateral of 500 ADA being liquidated, with the
collateral being transferred to the Stability Pool, and the iAsset from the Stability Pool being burned

CDP UTxO

Address
‘CDP Script

Datum

cdpOwner: Nothing

cdplAsset: TokenName MergeCDPs
cdpMintedAmount: Integer CDP UTxO
Value Address
[CDPToken: 1 ‘CDP Script
Datum

ADA: 500.000000

‘ cdpOwner: Nothing
cdplAsset: TokenName
cdpMintedAmount: Integer

Transaction
Merge CDPs

Value

CDPToken: 5
ADA: 10.000000

7% pre=

CDP Script

CDP Validator

Datum

(@)

c
¢(€l ¢l cdpowner: Nothing Address
clcdplAsset: TokenName

cdpMintedAmount: Integer

MergeAuxiliary

{- CDP Script

Value

CDPToken: 1
ADA: 500.000000

Figure 31: Example of 5 CDPs being merged together

48

CDP UTxO

Address
CDP Script
Datum
owner: PubKeyHash
asset: TokenName
minted_amount: Integer
accumulated_fees: AccumulatedFees
Value

CDPToken: 1
ADA: 500.000000

—2) User Wallet UTxO

Address
User Wallet

Value
ADA: 1000.000000
iUSD: 100.000000

-5) iAsset UTxO
Address
CDP Script
Datum

iaName: TokenName
iaMinRatio: Integer -
iaPrice: Integer/AssetClass

Value

iAssetToken: 1
ADA: 2.000000

Collector UTxO
Address
‘ Collector Script
Value
{ADA: 100.000000

RedeemCDP

Transaction
CDP Redemption

CDP Validator

Address
{- CDP Script

Redemption
INDY Staker Fee

(> coputxo
Address
‘CDP Script
Datum
owner: PubKeyHash
asset: TokenName

minted_amount: Integer
fees: AccumulatedFe

Value

CDPToken: 1
ADA: 200.000000

C}) User Wallet UTxO
Address
User Wallet

Value

ADA: 1300.000000

@ Collector UTxO

Address

Collector Script ‘

Value

ADA: 115.000000 ‘

Figure 32: Example of a CDP being redeemed for 300 ADA

e cdpToken :: CDPToken. Token for identifying authentic CDP output.

e versionRecordToken :: VersionRecordToken. Token for identifying the version record for a protocol
upgrade.

e collectorValHash :: ValidatorHash. The validator hash for the collector contract.

e govNFT GovNFT. NFT for identifying authentic governance parameters

e accountCreateFeeLovelaces Integer. Amount of lovelaces required to pay as an account creation
fee

e accountAdjustmentFeelLovelaces :: Integer. Amount of lovelaces required to pay as an account

adjustment fee

e requestCollaterallovelaces :: Integer. Minimum amount of lovelaces required to pay as collateral

for a request

49

Table 20: Stability Pool outputs

Type ‘ Description ‘ Datum ‘ Values
StabilityPool Each StabilityPool iasset: The name of the | StabilityPoolToken: 1
output holds iAssets to iAsset that this SP is for | iAsset: Funded by
be used for liquidations snapshot: The snapshot stability providers
of funds for the SP. See ADA: Collateral
Snapshot transferred to SP from
epoch2scale2sum: A map | liquidated CDPs
of the sum of funds for a
particular epoch and
scale
EpochToScaleToSum | Archives snapshot: A snapshot of | SnapshotToken: 1
EpochToScaleToSum EpochToScaleToSum
records asset: The name of the
iAsset that this snapshot
is for
Account Designates an active owner: The owner of the | AccountToken: 1
Stability Pool Account SP Account
iasset: The name of the
iAsset that this SP
Account is for
snapshot: The snapshot
of funds from the SP at
the time of deposit
Request Designates an active owner: The owner of the | RequestToken: 1
Stability Pool Request SP Request iAsset: optional, The
request: The action iAssets meant to be
intended to be done by deposited to the
this request Stability Pool
iasset: The name of the
iAsset that this SP
Request is for
output_address: The
address to send the
leftover collateral to

3.2.2 Stability Pool Endpoints

SP: Create Account (Request) Creates a request to create an account with a stability pool

Type ‘ Amount ‘ Description

Consume ‘ 1 ‘ The users wallet with the iAssets to deposit in the created account
Output ‘ 1 ‘ Stability Pool Account UTXO with the requested action

Output ‘ 1 ‘ A UTxO with the users wallet change

SP: Create Account (Execution) Executes a request to create a Stability Pool Account

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ ProcessRequest, the stability pool input

Redeemer ‘ N.A. ‘ ProcessRequest, the request input

Consume ‘ 1 ‘ Stability Pool UTxO

Consume ‘ 1 ‘ Stability Pool Account UTxO

50

Type ‘ Amount ‘ Description

Mint ‘ 1 ‘ Account Token representing the user’s new Stability Pool account
Output ‘ 1 ‘ Stability Pool UTXO with the updated snapshot

Output ‘ 1 ‘ Stability Pool Account UTXO with the snapshot and account owner
Output ‘ 1 ‘ A UTxO with the requested users wallet change

SP: Account Adjust (Request) Creates a request to adjust an existing stability pool account

Type ‘ Amount ‘ Description

Redeemer | N.A. | RequestAction, the account input

Consume ‘ 1 ‘ The users wallet with the iAssets to deposit in the created account
Consume ‘ 1 ‘ Stability Pool Account associated with the account owner
Output \ 1 \ Stability Pool Account associated with the account owner
Output ‘ 1 ‘ A UTxO with the users wallet change

SP: Adjust Account (Execution) Executes a request to adjust a Stability Pool Account

Amount

Type Description

Redeemer ‘ N.A. ProcessRequest, the stability pool input

Redeemer ‘ N.A. ProcessRequest, the stability pool account input

Consume ‘ 1 Stability Pool UTxO

Consume ‘ 1 Stability Pool Account UTxO

Output |1 Stability Pool UTXO with the updated snapshot

Output ‘ 1 Stability Pool Account UTXO with the updated snapshot and account owner
Output ‘ 1 ‘ A UTxO with the requested users wallet change

SP: Account Close (Request) Creates a request to close an existing stability pool account

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ RequestAction, the account input

Consume ‘ 1 ‘ Stability Pool Account associated with the account owner
Output ‘ Stability Pool Account associated with the account owner

|1
Output | 1 | A UTxO with the users wallet change

SP: Close Account (Execution) Executes a request to close a Stability Pool Account

Type | Amount | Description

Redeemer ‘ N.A. ProcessRequest, the stability pool input

Redeemer ‘ N.A. ProcessRequest, the stability pool account input

Consume | 1 Stability Pool UTxO

Consume Stability Pool Account UTxO

|1
Output ‘ 1 Stability Pool UTXO with the updated snapshot

51

Type ‘ Amount ‘ Description

Output ‘ 1 ‘ Stability Pool Account UTXO with the updated snapshot and account owner

Output ‘ 1 ‘ A UTxO with the requested users wallet change

SP: Cancel Account Creation Cancels the account creation

Type ‘ Amount ‘ Description

Redeemer | N.A. | AnnulRequest, the stability pool account input
Consume ‘ 1 ‘ Stability Pool Account UTxO

Output ‘ 1 ‘ A UTxO with the requested users wallet change

SP: Cancel Account Request Cancels a request on an existing account

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ AnnulRequest, the stability pool account input
Consume ‘ 1 ‘ Stability Pool Account UTxO

Output ‘ 1 ‘ Stability Pool Account UTXO with no requested action
Output ‘ 1 ‘ A UTxO with the requested users wallet change

3.3 Staking

The Staking contract is used primarily by the Indigo DAO Governance package for proving the ownership of
INDY tokens and locking those tokens upon voting. The Staking contract also includes functionality to collect
protocol fees from Collector UTXOs.

Table 29: Staking native tokens

Name ‘ Description ‘ Minting Policy
StakingManagerNFT | The NFT identifies the authentic The protocol mints exactly 1 token,
StakingManager output before launch
The NFT must be stored in the
StakingManager output
Validator scripts ensure that this NF'T
always stays at the StakingManager
output
StakingToken Identify the authentic StakingPosition | The transaction must consume a
output StakingManagerNFT or a
StakingToken

3.3.1 Parameters

stakingManagerNFT :: StakingManagerNFT. NFT of StakingManager.

e stakingToken :: StakingToken. Token for identifying authentic Staking Position output.

e indyToken :: INDY.

e pollToken :: PollToken. Token identifying authentic Poll output.

e versionRecordToken :: VersionRecordToken. Token identifying the VersionRegistry output.

e collectorValHash :: ValidatorHash. The collector script, used as a bridge between Staking and Poll
Script.

52

@ User Wallet UTxO
Address

User Wallet

Value

ADA: 1000.000000
iAsset: 50.000000

.

Transaction
Stability Pool - Create
Account Request

@ Account UTxO
Address
Stability Pool Script
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

ADA: 5.000000
iAsset: 50.000000

@ User Wallet UTxO
Address
’ User Wallet ’

Value

‘ADA: 995.000000 ’

Figure 33: Example of a user creating a request to make their first deposit into a Stability Pool, depositing 50

iAsset, 2 ADA, and paying a 5 ADA fee

@ StabilityPool UTxO
Address

‘Stability Pool Script ‘

Datum

iasset: TokenName
snapshot: SPInteger
epoch2scale2sum: Map
(Integer, Integer)

Value

StabilityPoolToken: 1
ADA: 2.000000
iAsset: 80.000000

@ Account UTxO
Address
‘Stability Pool Script
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

ADA: 5.000000
iAsset: 50.000000

ProcessRequest

ProcessRequest

A

‘ AccountToken

(=> stabilityPool UTxO

Address
Stability Pool Script
Datum

iasset: TokenName
snapshot: SPInteger
epoch2scale2sum: Map
(Integer, Integer)

Value

StabilityPoolToken: 1
ADA: 2.000000
iAsset: 130.000000

C}) Account UTxO

Address

Transaction
Stability Pool - Create
Account Execute

@ Stability Pool Validator
Address
« StabilityPool Script

Stability Pool Script
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

AccountToken: 1
ADA: 2.000000

(:—) User Wallet UTxO
Address
User Wallet ‘

Value

ADA: 3.000000 J

Figure 34: Example of an execution of a request of a user to make their first deposit into a Stability Pool,
depositing 50 iAsset, 2 ADA, and paying a 5 ADA fee

53

@ Account UTxO

Address @ Account UTxO

. . Address
Stability Pool Script ‘

‘Stability Pool Script ‘
Datum RequestAction

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Datum

owner: PubKeyHash
request: Option<AccountAction>
iasset: AssetName

Vel output_address: Address

Value
AccountToken: 1 “

ADA: 2.000000

Transaction
Stability Pool - Adjust
Account Request

AccountToken: 1
ADA: 5.000000
iAsset: 50.000000

@ User Wallet UTxO
Address

@ User Wallet UTxO

Address
User Wallet © Stability Pool Validator User Wallet ‘
Value Address Value
ADA: 1000.000000 « StabilityPool Script ADA: 995.000000 J

iAsset: 50.000000

Figure 35: Example of a user creating a request to adjust their deposit in a Stability Pool account, depositing
50 iAsset

(=> stabilityPool UTxO
Address

Stability Pool Script

StabilityPool UTxO Datum

Address iasset: TokenName
| stability Pool Script | snapshot: SPinteger
epoch2scale2sum: Map
(Integer, Integer)

Datum ProcessRequest

iasset: TokenName
snapshot: SPInteger
epoch2scale2sum: Map
(Integer, Integer)

Value

StabilityPoolToken: 1
ADA: 2.000000
iAsset: 130.000000

C}) Account UTxO

Address

Value

StabilityPoolToken: 1
ADA: 2.000000
iAsset: 80.000000

‘ AccountToken

A

ProcessRequest

Transaction Stability Pool Script
Stability Pool - Create

Account Execute Datum

@ Account UTxO
Address

owner: PubKeyHash
request: Option<AccountAction>
iasset: AssetName

‘Stability Pool Script output_address: Address

Datum Value

@ Stability Pool Validator AccountToken: 1

ADA: 2.000000

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Address

« StabilityPool Script
Value

ADA: 5.000000
iAsset: 50.000000

()—) User Wallet UTxO
Address
User Wallet ‘

Value

ADA: 3.000000 J

Figure 36: Example of an execution of a request of a user to make their first deposit into a Stability Pool,
depositing 50 iAsset, 2 ADA, and paying a 5 ADA fee

54

@ Account UTxO

Address
‘Stability Pool Script
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

AccountToken: 1
ADA: 2.000000

@ User Wallet UTxO
Address
‘User Wallet

Value

[ADA: 1000.000000

Figure 37:

(=> stabilityPool UTxO
Address
‘Stability Pool Script
Datum

iasset: TokenName
snapshot: SPInteger
epoch2scale2sum: Map
(Integer, Integer)

Value

StabilityPoolToken: 1
ADA: 2.000000
iAsset: 130.000000

@ Account UTxO

Address
Stability Pool Script
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

AccountToken: 1
ADA: 5.000000

RequestAction

Transaction
Stability Pool - Close
Account Request

@ Stability Pool Validator

Address

« StabilityPool Script

“ AccountToken

Transaction
Stability Pool - Adjust
Account Execute

© Stability Pool Validator

Address

@ Account UTxO
Address
‘Slability Pool Script
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

AccountToken: 1
ADA: 2.000000

C}) User Wallet UTxO
Address
‘ User Wallet

Value

{ADA: 995.000000

Example of a user creating a request to close their Stability Pool account

(=> stabilityPool UTXO
Address
‘Stability Pool Script
Datum

iasset: TokenName
snapshot: SPinteger
epoch2scale2sum: Map
(Integer, Integer)

Value

StabilityPoolToken: 1
ADA: 2.000000
iAsset: 80.000000

@ User Wallet UTxO
Address

User Wallet

« StabilityPool Script

Value

ADA: 3.000000
iAsset: 50.000000

Figure 38: Example of an execution of a request of a user closing a Stability Pool Account fee

55

@ Account UTxO

Address
Stability Pool Script
Datum

owner: PubKeyHash

AnnulRequest

()—) User Wallet UTxO

Address

Transaction ‘ User Wallet ‘

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

ADA: 5.000000
iAsset: 50.000000

Stability Pool - Cancel
Account Creation value
ADA: 5.000000 ‘

iAsset: 50.000000

© Stability Pool Validator

Address
« StabilityPool Script

Figure 39: Example of a user canceling their request to create a Stability Pool Account

(=> Account UTxO
Address
Stability Pool Script ‘
Datum

owner: PubKeyHash

@ Account UTxO
Address
Stability Pool Script ‘
Datum

owner: PubKeyHash

request: Option<AccountAction>
iasset: AssetName
output_address: Address

AnnulRequest Value

AccountToken: 1
ADA: 2.000000

Transaction

request: Option<AccountAction>
iasset: AssetName
output_address: Address

Value

AccountToken: 1
ADA: 5.000000
iAsset: 50.000000

Stability Pool - Cancel
Request

A4

C_}) User Wallet UTxO

Address
@ Stability Pool Validator

User Wallet

Address
« StabilityPool Script

Value
ADA: 5.000000 ‘

iAsset: 50.000000

Figure 40: Example of an execution of a request of a user canceling their Account Request

56

e cdpToken :: CDPToken. Necessary for OffChain Endpoint to construct CollectorScriptParams.
Table 30: Staking outputs
Type ‘ Description ‘ Datum ‘ Values
StakingManager | Only one output of this totalStake: The total StakingManagerNFT: 1
type is stored in the script amount of staked INDY
To create a StakingPosition | mSnapshot: The snapshot
output, the user must of ADA rewards for INDY
consume this output in the stakers
transaction
StakingPosition | An individual user’s INDY owner: The owner of the StakingToken: 1

staking position

staking position
lockedAmount: A map of
Poll ID to (Vote Amount,
Proposal End Time)
pSnapshot: The snapshot of
ADA rewards for the INDY
staker

3.3.2 Staking Endpoints

Staking: Create Creates a user’s staking position

Type

‘ Amount

Description

Redeemer ‘ N.A.

CreateStakingPosition

Consume ‘ 1

Staking Manager UTXO representing the global state of staking positions

Consume ‘ 1+

Mint ‘ 1 Staking Token representing the user’s staking position
Output ‘ 1 Staking Manager UTXO with the updated global state
Output ‘ 1 Staking Position UTXO holding the user’s Staking Token

|
|
|
‘ UTXOs containing the user’s INDY to be staked
|
|
|

Staking: Unstake Unstakes a user’s staking position

Type | Amount | Description
Redeemer ‘ N.A. UpdateTotalStake
Redeemer ‘ N.A. Unstake

Consume ‘ 1

|
|
|
‘ Staking Manager UTXO representing the global state of staking positions
|
|
|
|

Consume ‘ 1 Staking Position UTXO representing the user’s staking position
Burn ‘ 1 Staking Token representing the user’s former staking position
Output ‘ 1 Staking Manager UTXO with the updated global state
Output ‘ 1 UTXOs containing the user’s previously staked INDY

Staking: Stake

Adds more INDY to a user’s staking position

Type

‘ Amount ‘ Description

Redeemer ‘ N.A.

‘ UpdateTotalStake

Redeemer ‘ N.A.

| AdjustStaked Amount

57

Type ‘ Amount

Description

Consume ‘ 1

Staking Manager UTXO representing the global state of staking positions

Consume ‘ 1

Staking Position UTXO representing the user’s staking position

Consume ‘ 1+

UTXOs containing the INDY to be staked

Output ‘ 1

Staking Manager UTXO with the updated global state

Output ‘ 1

Staking Position UTXO representing the user’s updated staking position

Staking: Distribute

Distributes fees from the Collector to the Staking Manager

Type ‘ Amount | Description
Redeemer ‘ N.A. Distribute
Redeemer | N.A. Collect

Consume ‘ 1

Staking Manager UTXO representing the global state of staking positions

Consume ‘ 1+

Collector UTXOs containing the fees to distribute

Output ‘ 1

Staking Manager UTXO with the updated global state

Staking: Withdraw Rewards Withdraw ADA rewards allocated to a user’s staking position

Type ‘ Amount | Description
Redeemer ‘ N.A. UpdateTotalStake
Redeemer | N.A. AdjustStaked Amount

Consume ‘ 1

Staking Manager UTXO representing the global state of staking positions

Consume ‘ 1 Staking Position UTXO representing the user’s staking position
Output | 1 Staking Manager UTXO with the updated global state
Output ‘ 1 Staking Position UTXO representing the user’s staking position

58

Table 36: Governance native tokens

Name

Description

Minting Policy

3.4 Governance

Governance is a group of several contracts: Gov, Poll, Execute, and VersionRegistry. The Gov contract stores
protocol parameters and controls the creation/ending of a Governance Poll. The Poll contract handles the

creation of vote shards, voting, merging of vote shards, AQB calculations, and the ending of a Poll.

The

Execute contract takes the result of a passed proposal and applies the appropriate action to the contracts. The
VersionRegistry contract handles the creation of Version Records, which can be used by other protocol scripts

to find an upgrade path.

Table 36: Governance native tokens

Name ‘ Description Minting Policy

GovNFT Identify authentic Governance output The protocol mints exactly 1 token at
Governance script ensures that this initialization
NFT always stays at the Governance
output

PollToken Identifies an authentic proposal The transaction must consume
Validator scripts ensure that this token | GovNFT
always stays at Poll output

UpgradeToken Identifies a passed proposal and the The transaction must consume a

upgrade contract
Validator scripts ensure that this token
always stays at Execute output

PollToken

VersionRecordToken

Identifies a potential upgrade path for
a contract

Validator scripts ensure that this token
always stays at VersionRegistry output

The transaction must consume
UpgradeToken

3.4.1 Execute Script Parameters

e govNFT ::
e upgradeToken ::

e iAssetToken ::

e stabilityPoolToken ::

e versionRecordToken ::

upgrade.
e cdpValHash ::

e sPoolValHash ::

e versionRegistryValHash ::

output of a Version Registry.

e maxInterestPeriods ::

datum.

59

GovNFT. NFT for identifying authentic Governance Script output.
UpgradeToken. The asset class for identifying a valid upgrade token.

iAssetToken. Token for identifying authentic iAsset output.

StabilityPoolToken. Token for identifying authentic SP output.

VersionRecordToken. Token for identifying the version record for a protocol

ValidatorHash. Hash of CDP script, used for verifying the output of a CDP.
ValidatorHash. Hash of SP script, used for verifying the output of a SP.

ValidatorHash. Hash of Version Registry script, used for verifying the

Integer. The maximum number of interest periods that can be stored in TAsset

(=> stakingManager UTxO
Address

StakingManager UTxO ‘Siakmg Script

Address Dawny
total_stake: Integer

‘Staklng Script manager_snapshot: OnChainDecimal

Dat

aum Value
StakingManagerNFT: 1
ADA: 2.000000

total_stake: Integer
manager_snapshot: OnChainDecimal

Value

StakingManagerNFT: 1
ADA: 2.000000

CreateStakingPosition

Address
Staking Script ‘
Transaction g 2
Staking Create Staking Position Datum

owner: PubKeyHash
locked_amount: Map Integer
position_snapshot: OnChainDecimal

Value
StakingToken: 1
AD, 000000
INDY: 50.000000

—5) User Wallet UTxO

@ Staking Validator

Address Address

User Wallet « Staking Script

Value

ADA: 1000.000000
INDY: 100.000000

User Wallet UTxO
Address
User Wallet

Value

ADA: 1000.000000
INDY: 50.000000

Figure 41: Example of a user staking INDY for the first time, depositing 50 INDY

ngManager UTxO

(;> StakingManager UTxO
Address

Address
| taking script

Staking Script
Datum

Datum
total_stake: Integer
manager_snapshot: OnChainDecimal

Value
StakingManagerNFT: 1 ‘

total_stake: Integer
manager_snapshot: OnChainDecimal

UpdateTotalStake

Value

StakingManagerNFT: 1
ADA: 2.000000

ADA: 2.000000

StakingToken

Transaction
StakingPosition Staking Unstake

Address
Staking Script

User Wallet UTxO

Sa Address
owner: PubkeyHash ‘ User Wallet ‘
locked_amount: Map Integer
position_snapshot: OnChainDecimal > Value

@ Staking Validator T RGN
value Address INDY: 100.000000
StakingToken: 1

ADA: 2.000000 « Staking Script
INDY: 50.000000

&) User Wallet UTxO
Address
User Wallet
Value

ADA: 1000.000000
INDY: 50.000000

Figure 42: Example of a user unstaking 50 INDY

60

) StakingManag
Address

‘Staking Script
Datum

total_stake: Integer
manager_snapshot: OnChainDecimal

Value

UpdateTotalStake

StakingManagerNFT: 1
ADA: 2.000000

AdjustStakedAmount
Transaction
Staking Stake

—=) StakingPosition

Address

‘Staking Script
Datum

owner: PubKeyHash
locked_amount: Map Integer
position_snapshot: OnChainDecimal

@ Staking Validator
Value

StakingToken: 1
ADA: 2.000000
INDY: 50.000000

Address
« Staking Script

@ User Wallet UTxO
Address

‘ User Wallet

Value

ADA: 1000.000000
INDY: 50.000000

Figure 43: Example of a user staking an additional 25 INDY

4}// StakingManager UTxO
Address
‘Staking Script

Datum

total_stake: Integer Distribute
manager_snapshot: OnChainDecimal

Value

StakingManagerNFT: 1
ADA: 225.000000

Transaction
Staking Distribute

Collect

Address
Collector Script
Value
ADA: 100.000000

@ Staking Validator

Address
{ « Staking Script J

StakingManager UTxO

Address
Staking Script
Datum
total_stake: Integer
manager_snapshot: OnChainDecimal
Value

StakingManagerNFT: 1
ADA: 2.000000

StakingPosition

Address
Staking Script
Datum
owner: PubKeyHash
locked_amount: Map Integer
position_snapshot: OnChainDecimal

Value

StakingToken: 1
ADA: 2.000000
INDY: 75.000000

@ User Wallet UTxO
Address
User Wallet ‘

Value

ADA: 1000.000000
INDY: 25.000000

@ StakingManager UTxO
Address
‘Staking Script

> Datum

total_stake: Integer
manager_snapshot: OnChainDecimal

Value

StakingManagerNFT: 1
ADA: 2100.000000

Figure 44: Example of fees from the Collector being distributed to the Staking Manager

61

@ StakingManager UTxO

Address
‘Staking Script
Datum

total_stake: Integer

Value

StakingManagerNFT: 1
ADA: 1025.000000

manager_snapshot: OnChainDecimal

(=> stakingManager UTxO

Address
Staking Script
Datum

total_stake: Integer
manager_snapshot: OnChainDecimal

Value

StakingManagerNFT: 1
ADA: 1.000000

@ StakingPosition

Address
‘Staking Script

Datum

owner: PubKeyHash
locked_amount: Map Integer
position_snapshot: OnChainDecimal

Value
StakingToken: 1
ADA: 2.000000
INDY: 50.000000

@ User Wallet UTxO
Address
‘User Wallet
Value

{ADA: 100.000000

3.4.2 Gov Script
e govNFT ::

pollToken ::

indyAsset

upgrade.

a Poll.

gBiasTime

upgradeToken ::

versionRecordToken ::

pollManagerValHash ::

iassetAuthToken ::

@ StakingPosition

Address

Transaction
Staking - Withdraw Rewards

Staking Script
Datum
owner: PubKeyHash

locked_amount: Map Integer
position_snapshot: OnChainDecimal

Value
StakingToken: 1
ADA: 2.000000
INDY: 50.000000

©@ Staking Validator

Address

« Staking Script

C}) User Wallet UTxO

Address

User Wallet ‘
Value

ADA: 125.000000

Figure 45: Example of a user withdrawing a 25 ADA reward

Parameters

GovNFT. NFT for identifying authentic Governance Script output.

PollToken. The asset class for identifying a valid Poll token.

UpgradeToken. The asset class for identifying a valid Upgrade token.
INDY.

VersionRecordToken. Token for identifying the version record for a protocol

ValidatorHash. Hash of Poll Manager script, used for verifying the output of

:: POSIXTime. Used to apply some leverage to the voting procedures.

AssetAuthToken. The token that authenticates a valid iAsset UTxO.

3.4.3 Poll Manager Script Parameters

e govNFT ::

pollToken ::

indyAsset

govExecuteVal
Upgrade token.

pBiasTime

upgradeToken ::

shardsValHash ::

GovNFT. NFT for identifying authentic Governance Script output.

PollToken. The asset class for identifying a valid Poll token.
UpgradeToken. The asset class for identifying a valid Upgrade token.
INDY.

Hash :: ValidatorHash. Hash of Execute script, used for verifying the output of a

:: POSIXTime. Used to apply some leverage to the voting procedures.

ValidatorHash. Hash of the poll shards script.

62

e treasuryValHash :: ValidatorHash. Hash of the treasury script.

e initialIndyDistribution :: Integer. Used by the electorate calculation for the ITD value.

3.4.4 Poll Shard Script Parameters

e pollToken :: PollToken. The asset class for identifying a valid Poll token.
e stakingToken :: StakingToken. The asset class for identifying a valid Staking Position token.
e indyAsset :: INDY.

e stakingValHash :: ValidatorHash. Hash of Staking script, used for verifying the output of the Staking
token.

3.4.5 Version Record Script Parameters

e upgradeToken :: UpgradeToken. The asset class for identifying a valid Upgrade token.

Table 37: Governance outputs

Type ‘ Description ‘ Datum ‘ Values
Governance Only one output of this type | currentProposal: The GouNFT: 1

is stored in the script number of opened proposals

To create a Poll output, the protocolParams: The

user must consume this parameters of the protocol

output in the transaction currentVersion: The current

To store the protocol version of the protocol,

parameters starting at 0

tassetsCount: The number of
active iassets (including
delisted)

activeProposals: The number
of active proposals

63

Table 37: Governance outputs

Type

Description

Datum

‘ Values

Poll Manager

The Poll Manager acts as a
central UTXO that manages
the content of the poll

pollld: The identifying key
for this particular proposal
pollOwner: The pub key
hash of the owner of the poll
pollContent: The intended
action of this poll:
ProposeAsset, MigrateAsset,
ModifyProtocolParams,
UpgradeProtocol, and
TextProposal

pollTreasury Withdrawal: The
value allowed to be
withdrawn from the treasury
pollStatus: The count of yes
and no votes

pollEndTime: The time in
which the poll should be
ended

pollCreatedShards: The
number of shards created
pollTalliedShards: The
number of shards tallied and
merged into Poll Manager
pollTotalShards: The number
of shards in total
pollProposeEndTime: The
time in which all of the poll
shards must be created
within

pollExpirationTime: The
time in which the poll should
expire

pollProtocol Version: The
protocol version at the time
the poll UTXO was created
pollMinimumQuorum: The
minimum amount of INDY
for a proposal to be possible
to pass.

PollToken: 1

Poll Shard

A derivation of the Poll
Manager that stores some
votes

pollld: The identifying key
for this particular proposal
pollStatus: The count of yes
and no votes

pollEndTime: The time in
which the poll should be
ended

pollManagerAddress: The
address of the poll manager
script

PollToken: 1

64

Table 37: Governance outputs

Type

Description

Datum

‘ Values

Upgrade

This output can be consumed
to process a passed proposal

uwld: The identifying key for
the passed proposal this
upgrade was derived from
uContent: The intended
action of this upgrade:
ProposeAsset, MigrateAsset,
ModifyProtocolParams,
UpgradeProtocol, and
TextProposal

uPassedTime: The time in
which the poll was passed
uEndTime: The time in
which the upgrade should be
deemed ”expired”
uProtocolVersion: The
protocol version at the time
the upgrade UTXO was
created

Upgrade Token: 1

VersionRecord

Given a particular version id,
the path for upgrading to a
new validator

versionld: The version that

the record is associated with.

Version starts at 0 at genesis
and works up

versionPaths: A map of the
validator name that should
be upgraded and the
currency symbol that can be
used to process the upgrade

VersionRecordToken: 1

3.4.6 Governance Endpoints

Governance: Create Proposal Creates a proposal to enact changes

Type ‘ Amount ‘ Description

Redeemer | N.A. CreatePoll, takes as parameters the time the poll voting period should end, a
public key hash corresponding to a user’s wallet, and the Poll’s type (e.g.:
ProposeAsset, MigrateAsset, etc.)

Consume ‘ 1 ‘ Governance UTXO

Consume ‘ 1+ ‘ User Wallet UTxO for INDY to be deposited to create the proposal

Mint ‘ 1 ‘ Poll Token representing the newly created proposal

Output ‘ 1 ‘ Governance UTXO

Output ‘ 1 ‘ Poll Manager UTXO that represents the proposal

Governance: Vote Vote on an open proposal

Type

‘ Amount ‘ Description

Redeemer ‘ N.A.

‘ Vote, takes as a parameter the vote choice (yes or no)

Redeemer ‘ N.A.

‘ Lock

Consume ‘ 1

| Poll Shard UTXO to cast the vote with

Consume ‘ 1

‘ Staking Position UTXO representing the user’s voting power

65

Type ‘ Amount ‘ Description

Output ‘ 1 ‘ Poll Shard UTXO with the vote recorded

Output ‘ 1 ‘ Staking Position UTXO representing the user’s voting power

Governance: Create Shards Create one or more shards to allow users to vote on proposals

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ CreateShards, takes as a parameter the time the poll voting period should end
Consume | 1 | Poll Manager UTXO that represents the proposal

Output ‘ 00 ‘ Poll Shard UTXOs to record votes

Governance: Merge Shards Merges one or more shards so that votes can be tallied

Type ‘ Amount | Description
Redeemer | N.A. MergeShardsManager, takes as a parameter the time the poll voting period
should end

Consume ‘ 1 Poll Manager UTXO that represents the proposal

Consume ‘ 00 Poll Shard UTXOs to merge

|
Redeemer ‘ N.A. ‘ MergeShards
|
|
|

Output ‘ 1 Poll Manager UTXO with the updated vote count

Governance: End Proposal Passed End a proposal that has passed

Type ‘ Amount | Description

Redeemer ‘ N.A. EndPoll, takes as a parameter the time the poll voting period should end

Consume ‘ 1 Poll Manager UTXO that represents the proposal

Reference ‘ 1 Governance UTXO
Mint |1 Upgrade Token
Burn ‘ 1 Poll Token
Output ‘ 1 Upgrade UTXO

Governance: End Proposal (Failed or Expired) End a proposal that has failed or expired

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ EndPoll, takes as a parameter the time the poll voting period should end
Consume ‘ 1 ‘ Poll Manager UTXO that represents the proposal

Reference ‘ 1 ‘ Governance UTXO

Burn ‘ 1 ‘ Poll Token

Output ‘ 1 ‘ Treasury UTXO containing the INDY deposited when the proposal was created

Governance: Execute Text Proposal FExecute a passed proposal containing text adopted by the DAO

66

Address
‘Gov Script
Datum
current_proposal: Integer

protocol_params: ProtocolParams

current_version: Integer
iassets_count: Integer
active_proposals: Integer

Value

GovNFT: 1
ADA: 2.000000

Governance UTxO

CreatePoll

Poll Token

—?/ User Wallet UTxO
Address

‘ User Wallet

Value

ADA: 1000.000000
INDY: 100.000000

Transaction
Governance Create Proposal

@ Gov Validator

Address
{ « Gov Script J

Address

‘Gov Script
Datum

current_proposal: Integer
protocol_params: ProtocolParams
current_version: Integer
iassets_count: Integer
active_proposals: Integer

Value

GovNFT: 1
ADA: 2.000000

PollManager UTxO

Address
‘Poll Script

Datum

poll_id: Integer

poll_owner: PubKeyHash
content: ProposalContent
treasury_withdrawal: TreasuryWithdrawal
status: PollStatus

end_time: POSIXTime
created_shards_count: Integer
tallied_shards_count: Integer
total_shards_count: POSIXTime
propose_end_time: POSIXTime
expiration_time: POSIXTime
protocol_version: Integer
minimum_quorum: Integer

Value

PollToken: X
ADA
INDY: 50

@ User Wallet UTxO

Address

User Wallet ‘
Value

ADA: 1000.000000
INDY: 50.000000

Figure 46: Example of a user depositing 50 INDY and 2 ADA to create a proposal

-5) PollShard UTXO

Address
‘Poll Script

Datum
poll_id: Integer
status: PollStatus
end_time: POSIXTime
protocol_version: Integer

Value

PollToken: 1
ADA

Transaction
Governance Vote

StakingPosition
Address
Staking Script
Datum

owner: PubKeyHash
locked_amount: Map Integer
position_snapshot:
OnChainDecimal

Value
StakingToken: 1
ADA: 2.000000
INDY: 50.000000

© Staking Validator

@ Poll Validator

Address Address
« Poll Script J « Staking Script

Figure 47: Example of a user casting their vote

67

(=> Polishard UTx0

Address
‘ Poll Script

Datum
poll_id: Integer
status: PollStatus
end_time: POSIXTime
protocol_version: Integer

Value

PollToken: 1
ADA

StakingPosition

Address
Staking Script
Datum

owner: PubKeyHash
locked_amount: Map Integer
position_snapshot:
OnChainDecimal

Value
StakingToken: 1
ADA: 2.000000
INDY: 50.000000

PollManager UTxO

Address
‘Poll Script
PollManager UTxO 20zt
poll_id: Integer
Address poll_owner: PubKeyHash
. content: Proposalcontem
‘Poll Script ‘

treasury_withdrawal: TreasuryWithdrawal
status: PollStatus

end_time: POSIXTime
created_shards_count: Integer
tallied_shards_count: Integer
total_shards_count: POSIXTime
propose_end_time: POSIXTime
expiration_time: POSIXTime
protocol_version: Integer
minimum_quorum: Integer

Datum

CreateShards
poll_id: Integer

poll_owner: PubKeyHash

content: ProposalContent
treasury_withdrawal: TreasuryWithdrawal
status: PollStatus

end_time: POSIXTime
created_shards_count: Integer
tallied_shards_count: Integer
total_shards_count: POSIXTime
propose_end_time: POSIXTime

=

Value

PollToken: X
expiration_time: POSIXTime ADA: 2.000000
protocol_version: Integer i =
minlmum_quorum: Integer Transaction INDY: 50

Governance Create Shards

Value

PollToken: X
ADA: 2.000000 (=> Polishard UTx0
INDY: 50

(=> Polishard uTxO
(=> Polishard uTx0

Address

@ Poll Validator

Address .
Poll Script
« Poll Script

Datum

poll_id: Integer
status: PollStatus
end_time: POSIXTime

Value

PollToken: 1
ADA =

Figure 48: Example of a user creating three vote shards for their proposal and depositing a refundable 6 ADA

PollManager UTxO

Address
‘Po\l Script

Datum
poll_id: Integer PoliManager UTxO
poll_owner: PubKeyHash
content: ProposalContent

Address
treasury_withdrawal: TreasuryWithdrawal
status: PollStatus ‘pou Script ‘

end_time: POSIXTime MergeShardsManager
created_shards_count: Integer
tallied_shards_count: Integer
total_shards_count: POSIXTime
propose_end_time: POSIXTime
expiration_time: POSIXTime
protocol_version: Integer
minimum_quorum: Integer

Datum

poll_id: Integer

poll_owner: PubKeyHash

content: ProposalContent
treasury_withdrawal: TreasuryWithdrawal
status: PollStatus

end_time: POSIXTime
created_shards_count: Integer

PollTokens

Value

tallied_shards_count: Integer
PollToken: X total_shards_count: POSIXTime
ADA: 2.000000 Transaction propose_end_time: POSIXTime
INDY: 50

expiration_time: POSIXTime
protocol_version: Integer
minimum_quorum: Integer

Governance Merge Shards

Value

MergeShards PollToken: X

ADA
INDY: 50

@ Poll Validator

PollShard UTxO Address
PollShard UTxO « Poll Script
Polishard UTxO

Address

Poll Script

Datum
poll_id: Integer
status: PollStatus
end_time: POSIXTime
protocol_version: Integer

Value

PollToken: 1
ADA r

Figure 49: Example of a user merging three vote shards for their proposal and retrieving their original 6 ADA
deposit

68

PollManager 0

Address
‘ Poll Script

Datum

poll_id: Integer

poll_owner: PubKeyHash
content: ProposalContent
treasury_withdrawal: TreasuryWithdrawal
status: PollStatus

end_time: POSIXTime
created_shards_count: Integer
tallied_shards_count: Integer
total_shards_count: POSIXTime
propose_end_time: POSIXTime
expiration_time: POSIXTime
protocol_version: Integer
minimum_quorum: Integer

Value

PollToken: X
ADA: 2.000000
INDY: 50

EndPoll

[‘ Upgrade Tuken} [“ PollTukens]

Transaction
Governance End Proposal

Governance UTxO

Address
‘Gov Script
Datum

current_proposal: Integer
protocol_params: ProtocolParams
current_version: Integer
iassets_count: Integer
active_proposals: Integer

Value

GovNFT: 1
ADA: 2.000000

/ @ Poll Validator
Address
4 « Poll Script

Governance UTxO
Address

‘Gov Script

Datum

current_proposal: Integer
protocol_params: ProtocolParams

active_proposals: Integer
Value

GOVNFT: 1
ADA: 2.000000

Upgrade UTxO

Address
‘Poll Script ‘
Datum
ulD: Integer
uContent: ProposalContent
uEndTime: POSIXTime
uPassedTime: POSIXTime
uProtocolVersion: Integer

Value

UpgradeToken: 1
ADA

C_/—‘ User Wallet UTxO

Address
User Wallet
Value
INDY: 50.000000

Figure 50: Example of a user ending their proposal that passed and retrieving their original 50 INDY deposit

PollManager UTxO

Address
‘ Poll Script

Datum

poll_id: Integer

poll_owner: PubKeyHash
content: ProposalContent
treasury_withdrawal: TreasuryWithdrawal
status: PollStatus

end_time: POSIXTime
created_shards_count: Integer
tallied_shards_count: Integer
total_shards_count: POSIXTime
propose_end_time: POSIXTime
expiration_time: POSIXTime
protocol_version: Integer
minimum_quorum: Integer

Value
PollToken: X

ADA: 2.000000
INDY: 50

EndPoll

Transaction
Governance End Proposal

Address
‘Gov Script

Datum
current_proposal: Integer
protocol_params: ProtocolParams
current_version: Integer
iassets_count: Integer
active_proposals: Integer

Value

GOVNFT. 1
ADA: 2.000000

@ Poll Validator
Address
-7 « Poll Script

Governance UTxO

Address
‘Gov Script
Datum

current_proposal: Integer
protocol_params: ProtocolParams
current_version: Integer
iassets_count: Integer
active_proposals: Integer

Value

GovNFT: 1
ADA: 2.000000

Treasury UTxO

Address
‘Treasury Script
Value

INDY: 50

User Wallet UTxO

Address
User Wallet ‘
Value

ADA: 1000.000000 ‘

Figure 51: Example of a user ending a failed or expired proposal and sending the deposited 50 INDY to the

Treasury

69

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ EndPoll, takes as a parameter the time the poll voting period should end
Redeemer | N.A. | Execute
Consume | 1 | Upgrade UTXO containing the Upgrade Token for the passed proposal
Burn ‘ 1 ‘ Upgrade Token
@ Upgrade UTxO
Address
Poll Script
Datum
ulD: Integer
uContent: ProposalContent { “ UpgradeToken
uEndTime: POSIXTime
uPassedTime: POSIXTime /
uProtocolVersion: Integer
Value Transaction
UpgradeToken: 1 Governance Text Proposal
ADA

|

@) Execute Validator

Address

« Execute Script

Figure 52: Example of a user executing their passed text proposal and retrieving their original 2 ADA deposit

Governance: Execute Propose Asset Execute a passed proposal adopted by the DAO to whitelist a
new iAsset

iAsset

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ Execute

Consume ‘ 1 ‘ Upgrade UTXO containing the Upgrade Token for the passed proposal
Burn |1 | Upgrade Token

Mint ‘ 1 ‘ iAsset Token

Mint ‘ 1 ‘ Stability Pool Token

Output | 1 | iAsset UTXO representing the new whitelisted iAsset

Output 1 Stability Pool UTXO representing the Stability Pool for the new whitelisted

Governance: Migrate Asset FExecute a passed proposal adopted by the DAO to update an existing

iAsset

Type ‘ Amount ‘ Description
Redeemer ‘ N.A. ‘ Execute
Redeemer | N.A. | UpgradeAsset

70

Type ‘ Amount ‘ Description

Consume ‘ 1 ‘ Upgrade UTXO containing the Upgrade Token for the passed proposal
Consume ‘ 1 ‘ iAsset UTXO representing the iAsset to update

Burn ‘ 1 ‘ Upgrade Token

Output ‘ 1 ‘ iAsset UTXO representing the updated iAsset

3.5 Collector

The Collector contract is an intermediary contract between protocol fee collection and distribution. The
collection of funds can occur by sending funds directly to the Collector, or consuming an existing Collector
and the output being more funds than were input. To distribute the funds, the Staking Manager can consume
a Collector UTXO and use it to send funds to INDY stakers.

3.5.1 Parameters
e stakingManagerNFT :: StakingManagerNFT. NFT of StakingManager.
e stakingToken :: StakingToken. Token for identifying authentic Staking Position output.

e versionRecordToken :: VersionRecordToken. Token identifying the VersionRegistry output

3.5.2 Collector Endpoints

Collector: Collect Collect Protocol Fees upon withdrawing a CDP’s collateral or closing a CDP

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ Collect

Consume ‘ 1 ‘ Collector UTXO which may already contain previously collected protocol fees
Consume ‘ 1 ‘ CDP UTXO that represents a user’s CDP

Output ‘ 1 ‘ Collector UTXO updated with the collected fee

3.6 Treasury
The purpose of this contract is to hold the DAO Treasury funds. The DAO Treasury will contain INDY that’s

vested over time according to Indigo’s tokenomics model. The funds in the DAO Treasury are intended to be
spent to help further develop, maintain and enhance the Indigo Protocol for the betterment of its users and
INDY holders. The Treasury can be spent by creating a DAO proposal that includes a TreasuryWithdrawal
value.
3.6.1 Parameters

e versionRecordToken :: VersionRecordToken. Token identifying the VersionRegistry output.

e upgradeToken :: UpgradeToken. Token identifying an Upgrade output.

e treasuryUtxosStakeCredential :: Option<StakeCredential>. An optional Stake Credential to
attach to Treasury UTxOs.

Table 48: Treasury outputs

Type ‘ Description ‘ Values

Treasury | This output stores the DAO Treasury tokens INDY: The INDY stored in the Treasury
IdentityToken: 1

71

@ iAsset UTxO
Address

Upgrade UTxO

CDP Script

Address
Poll Script ‘ Receemey
iaName: TokenName
Datum iaMinRatio: OnChainDecimal
ulD: Integer iaPrice: OracleAssetNFT

uContent: ProposalContent
UEndTime: POSIXTime
uPassedTime: POSIXTime
uProtocolVersion: Integer

Value

{ 0 StabilityPoolToken
ADA: 2.000000

[“ UpgradeToken

o AssetToken

Value

UpgradeToken: 1
ADA

Transaction
Governance Propose Asset

(=> stabilityPool UTxO

Address

Stability Pool Script
Datum

@ Execute Validator

Address iasset: TokenName
shapshot: SPinteger
epoch2scale2sum: Map
(Integer, Integer)

« Execute Script

Value

StabilityPoolToken: 1
ADA: 2.000000

Figure 53: Example of a user executing their passed whitelist iAsset proposal, enabling a new iAsset within the
protocol, creating a new Stability Pool, and retrieving their original 2 ADA deposit

Upgrade UTxO
Address

Poll Script

Datum

ulD: Integer

(=> imssetuTxo
uContent: ProposalContent

uEndTime: POSIXTime Address
uPassedTime: POSIXTime CDP Script
uProtocolVersion: Integer
Val Redeemer
aue iaName: TokenName
UpgradeToken: 1 iaMinRatio: OnChainDecimal

ADA iaPrice: OracleAssetNFT

Value

Transaction ADA: 2.000000

Governance Migrate Asset

%1) iAsset UTXO

Address
CDP Script
Redeemer

iaName: TokenName
iaMinRatio: OnChainDecimal
iaPrice: OracleAssetNFT

@ Execute Validator @ CDP Validator
Address
« Execute Script J {- CDP Script

Address

Value
{ADA: 2.000000

Figure 54: Example of a user executing their passed proposal to update an iAsset, and retrieving their original
2 ADA deposit

72

3.6.2 Treasury Endpoints

Treasury: Split Ensures that it is possible to have a structure of 1 Asset j—;, 1 UTxO. This is useful to
separate out assets cramped into a single UTxO (e.g. as a result of donations or failed multi-assets withdrawals)
and increase their availability.

Type
Redeemer ‘ N.A.

‘ Amount ‘ Description

‘ Split, Treasury Input
‘ Treasury UTXOs with lovelaces and Multi-Assets

Consume ‘ 1+
Output ‘ 1
Output ‘ 14

‘ Treasury UTXO with the lovelaces of the treasury input
‘ Treasury UTXO with each Multi-Asset type

@ Treasury UTxO

Address
‘Treasury Script ‘

Datum @ Treasury UTxO
‘Void Address
{)) Treasury UTxO Value ‘TfeaSUfy Script
Address {ADA: 2994 Datum
. ‘Void
‘Treasury Script
Datum S Value
i) / ADA: 2.000000
‘de — > Transaction _— INDY: 1000.000000
Treasury - Split I
Value)
ADA: 3000
INDY: 1000.000000 —5) Treasury UTxO
iUSD: 10000.000000 el Address
iBTC: 4.500000 .
‘Treasury Script
@ Treasury UTxO Datum
< Address ‘ Void
Address ‘Treasury Script ‘ Value

« Treasury Script

|

Datum
Void
Value

ADA: 2.000000
iBTC: 4.500000

ADA: 2.000000
‘ iUSD: 10000.000000

|

Figure 55: Example of a user executing their passed proposal to update an iAsset, and retrieving their original

2 ADA deposit

Treasury: Merge Defragments a single asset spread across multiple UTXOs locked in the treasury script
(INDY from failed proposals and other tokens from strategic movements such as LP tokens or donations).

Type ‘ Amount ‘ Description

Redeemer ‘ N.A. ‘ Merge, Treasury Input

Consume ‘ 1+

\ Treasury UTXOs with lovelaces and Multi-Assets

Output ‘ 1

‘ Treasury UTXO with all the value of the merged Treasury Inputs

Treasury: Prepare Withdrawal To prepare a single UTxO to be spent from the treasury following a
request voted and passed by the DAQO. This is to make sure that multi-asset withdrawals can be processed.

Type | Amount | Description

Redeemer ‘ N.A. ‘ PrepareWithdrawal, Treasury Inputs

Consume ‘ 1+

‘ Treasury UTXOs with lovelaces and Multi-Assets

73

Type ‘ Amount ‘ Description

Reference ‘ 1 ‘ Upgrade UTXO with the expected withdrawal value
Output ‘ 1 ‘ Treasury UTXO with all the value of intended Withdrawal
Output ‘ 1 ‘ Treasury UTXO with all the change

4 Known Protocol Limitations

4.1 Governance Contention

Users can deposit their INDY into the protocol to become Members and gain access to privileges such as voting
rights and reward collection. The Staking Manager UTXO is responsible for managing staking positions of
users. The Staking Manager must be updated upon the following actions:

1. Create a staking position (i.e., deposit INDY into governance)

2. Adjust a staking position (i.e., deposit INDY into or withdraw INDY from governance)
3. Deposit staking reward (i.e., collect an ADA protocol fee)

4. Withdraw staking reward (i.e., redeem ADA reward for staking)

Interacting with the Staking Manager causes contention because only one update can be made per block.
As a mitigation effort, the Collector can bundle staking rewards collected by the protocol to reduce the number
of staking reward transactions deposited into the Staking Manager. Contention still exists for INDY stakers
depositing or withdrawing INDY or withdrawing ADA rewards.

Additionally, contention exists for recording governance votes. To improve scalability, votes are recorded
using individual shards. Users can pick unused shards to record their votes. While, theoretically, an unlimited
number of shards can be configured, the Cardano blockchain is limited in the number of shards that can record
votes per block. If there are insufficient available shards, then users will have to wait for a shard to become
available before voting.

Shard collision can occur when two or more users select the same shard to vote with; only one user will
succeed with recording the vote, the other users using the same shard will experience transaction errors. If a
user explicitly checks for shard availability before submitting a transaction, another user may also select that
same shard before the transaction is processed in a block, thereby possibly resulting in collision and transaction
failure for either user.

5 Glossary
Term ‘ Description
Debt Minting Fee Paid when iAsset is minted, benefits INDY stakers and varies

according to market conditions, affecting debt minting volumes.

Redemption INDY Staker Fee ‘ Imposed on redemption’s, paid by the redeemer to INDY Staker’s.

Redemption Reimbursement Fee | Imposed on redemption’s, paid by the redeemer back to the
redeemed Collateralized Debt Position.

Stability Pool Fee A fee that is taken whenever a Stability Pool Provider withdraws
iAssets from the Stability Pool. Those iAssets are distributed
across the remaining Stability Pool Providers.

CDP Collateral Fee A fee applies with withdrawing collateral from your CDP or upon
closure. This fee is distributed to INDY Stakers.

6 Definitions for Mathematical Notations

Throughout this document, references are made to mathematical equations. Below is a summary of notations
that may be used and their associated meanings.

74

—@ Treasury UTxO
Address
‘Treasury Script
Datum
‘Void
Value

ADA: 2.000000
INDY: 250

@ Treasury UTxO

Address
‘Treasury Script
Datum
‘Void
Value

ADA: 2.000000
INDY: 250

@ Treasury UTxO

Address

‘Treasury Script

Datum
‘Void
‘ Value

INDY: 250

[ADA: 2.000000

@ Treasury UTxO

{)) Treasury UTxO

Address
‘Treasury Script

Datum

‘ ‘Void
Value

ADA: 2.000000
INDY: 250

Address

Treasury Script

Transaction Datum

Treasury - Merge Void
Value

ADA: 8.000000
INDY: 1000.000000

Address
{ « Treasury Script

Figure 56: Example of a ADA, INDY, iUSD, iBTC Treasury UTxO being merged into a single UTxO

@ Treasury UTxO
Address

‘Treasury Script
Datum
‘Void
Value
{ADA: 3000

@ Treasury UTxO
Address

‘Treasury Script
Datum
‘ Void
Value
P NDY: 1000.000000

@ Upgrade UTxO
Address
‘Execute Script

Datum

id: Integer

content: ProposalContent
end_time: POSIXTime
passed_time: POSIXTime
protocol_version: Integer
treasury_withdrawal:
TreasuryWithdrawal

Value

UpgradeToken: 1
ADA

@ Treasury UTxO
Address
‘Treasury Script
Datum
‘Void
Value

ADA: 2000
INDY: 700.000000

Transaction
Treasury - Prepare
Withdrawal

@ Treasury UTxO

Address

‘Treasury Script

Datum
Void

Value

Address
« Treasury Script

ADA: 1000

INDY: 300.000000

Figure 57: Example of a ADA and INDY Treasury UTxO being merged into a single UTxO based on a
governance proposal withdrawal of 300 INDY and 1000 ADA

(0]

6.1 Sets

Values enclosed in { } are a unique assortment of values. Each value is separated by a comma (,).
{10, 20, 30, 40,50} means five values incrementing in tens, beginning at 10 and ending at 50.

6.2 Summation

The)" represents a sum of values. It can either be in the form of Yz or Y., 4.
>~ means to sum all values of a set. If = is a set of {1,2,3}, then:

E:x:1+2+3:6

>, i means to iterate n times and sum the result of z. i begins at 1 and increments until i equals n. If n
is 3, then:

ﬁii:1+2+3:6

i=1

6.3 Length of Sets

A set enclosed within | | represents the length of the set.
|z| means the length of set z. If = is {5, 10, 15}, then |z| = 3 because it contains 3 elements in the set.

6.4 Indexes

A subscript (z;) represents an associated variable or a value within a set.
If z is a set and ¢ is a number, then x; means the i*® element of the set z. If z is {3,6,9}, then z; is 3, x5
is 6, and =3 is 9. Thus, if 7 is 2, then z; is 6 because it’s the 29 element of z.

6.5 Mean of Sets

A set with (a bar) above it represents the mean (average) of the set.
T means the mean of set z, which is the sum of all elements in the set divided by the length of the set.
Alternatively, T can be expressed as:

Zlﬂ1 Ly
|2
If z is {10, 30, 20, 40}, then:

10+30+20+40

2
1 5

T =

6.6 Rounding

Values enclosed in |] or | | represent the value either rounded up or down to the nearest whole number.
[z] means “ceil,” or to round up to the nearest whole number. If z is 0.5, then: [z] = 1.
|z] means “floor,” or to round down to the nearest whole number. If z is 0.5, then: |z] = 0.

6.7 Scoped Variables

Sometimes equations may be simplified and made more readable using scoped variables.

1
- <etyequa11
Y
throughout any component within the () it’s defined within. Therefore, z is 1 because the bottom-most

statement is y and y is 1.

means to create a variable called y with a value of 1, which can then be referenced

76

6.8 Conditional Statements

A statement proceeding { without an enclosing } is conditional. Conditional statements take the form of
z ifa>0anda<1

{x it a >.0 . They can have two or more conditions, such as: ¢ y if @ > 50
y otherwise .
z otherwise
v ifa>0anda<1
y ifa>1 means that the value is determined by the truthfulness of three conditions. If a is
z otherwise

between 0 and 1, then the statement is x. If a is 1 or larger, then the statement is y. The only other possibility
is a is 0 or smaller, in which case the statement is z.

“otherwise” means if no other condition matches.

“and” means that both conditions must be true.

“or” means that either condition must be true.

6.9 Functions

Statements proceeding f : () — represent a callable function that can be referenced.
f:(a,b) = a+b means that f takes two values and adds them together to determine the value. A reference
to f(1,2) equates to 3.

6.10 Minimum and Maximums

Minimum and maximum values within sets can be referenced using min { } and max { } respectively.
main {100, 10, 1000} means the lowest value out of the set {100, 10,1000}, therefore: 10.
mazx {100, 10,1000} means the highest value out of the set {100, 10,1000}, therefore: 1000.

7 Minimum ADA to Create UTXO

To create a UTXO on Cardano, a minimum amount of ADA is required to be locked into the transaction. The
amount of ADA deposit required to create a UTXO is calculated using the formula:

x = ab+ 160b

Where:

e 1 is the amount of ADA required to create a shard
e a is the size of the UTXO of the transaction

e b is the coinsPerUTzOByte parameter of the Cardano blockchain!®

Upon closing the UTXO, the deposited ADA can be unlocked.

15Calculating required ADA for UTXOs is described by the UTXO inference rules on page 16 of the formal Cardano specification.

7

https://hydra.iohk.io/build/17586760/download/1/babbage-changes.pdf

	Motivation
	Introduction
	Synthetic Assets
	Indigo Protocol
	Benefits of iAssets
	Obtaining iAssets

	Collateralized Debt Positions
	CDP and iAsset Example
	CDP Actions and States
	CDP Liquid Staking
	CDP Redemption
	CDP Interest

	INDY
	Fair Launch
	Token Generation Event
	Initial Liquidity Event
	Indigo Rewards

	Stability Pools
	Stability Pool Staking Fees
	Stability Pool Withdraw Fee
	Stability Pool Liquidation Rewards
	Liquidity State Transitions

	Oracles
	iAsset Price Stability
	Managing Liquidation Ratio for Peg
	Managing Maintenance Ratio for Peg
	Managing Interest Rates for Peg
	Managing Redemptions for Peg

	Governance
	Indigo DAO
	Indigo Foundation
	Governance Process
	Staking
	Governance Rewards
	Adaptive Quorum Biasing
	Governance Sharding
	Governance Proposal Types
	Protocol Parameters
	Governance Proposal Process
	Indigo DAO Treasury
	Protocol Upgrade

	Protocol Profit Sharing

	Smart Contract Design
	CDP
	CDPCreator Parameters
	CDP Parameters
	CDP Endpoints

	Stability Pool
	Stability Pool Parameters
	Stability Pool Endpoints

	Staking
	Parameters
	Staking Endpoints

	Governance
	Execute Script Parameters
	Gov Script Parameters
	Poll Manager Script Parameters
	Poll Shard Script Parameters
	Version Record Script Parameters
	Governance Endpoints

	Collector
	Parameters
	Collector Endpoints

	Treasury
	Parameters
	Treasury Endpoints

	Known Protocol Limitations
	Governance Contention

	Glossary
	Definitions for Mathematical Notations
	Sets
	Summation
	Length of Sets
	Indexes
	Mean of Sets
	Rounding
	Scoped Variables
	Conditional Statements
	Functions
	Minimum and Maximums

	Minimum ADA to Create UTXO

